

Arctic Climate Forum

5th Arctic Climate Forum (ACF-5) Arctic Regional Climate Center – network (ArcRCC-N)

27-28 May, 2020

Videoconferences

Summary version May 27th

WMO OMM

World Meteorological Organization Organisation météorologique mondiale Helge Tangen, ArcRCC-N coordinator, Norwegian Meteorological Institute

Vasily Smolyanitsky, ArcRCC – N Northern Eurasia node coordinator (host) Arctic and Antarctic Research Institute (AARI)

Key things on the forum

ACF is based on the Regional Climate Outlook Forum (RCOF) <u>concept</u> developed and supported by WMO in many regions around the world over the past two decades, as a key activity of WMO Regional Climate Centres (RCCs). WMO has established RCCs in many areas of the globe to fill geographical and service gaps in climate information, and to improve the collaboration and integration amongst National Meteorological and Hydrological Services (NMHS). The WMO, with active support from its Members in the Arctic region, has been making concerted efforts to implement an <u>Arctic Regional Climate Centre Network</u> (ArcRCC-N) to operationally provide climate scale (monthly and seasonal) circumpolar summary and outlook information for the key Arctic climate variables including temperature, precipitation and sea-ice for all of the Arctic. The ArcRCC-N includes 3 nodes (Nordic, North American, Northern Eurasia) supported by corresponding NMHS and has been in a demonstration phase since May, 2018

The key objectives of the current ACF-5 are to:

- Develop the consensus statement on the current status (winter 2019/2020 spring 2020) and future outlook (summer 2020) of the Arctic climate on a seasonal scale;
- □ Raise awareness of end-users about **new climate products and services** for the Arctic, potential support to decision-making, and the current limitations;
- Interact with end-users and learn about the climate information they currently use for planning, and their needs for climate information.

5th Arctic Climate Forum (ACF-5) videoconference - format

Schedule:

- May 27th 2020, Wednesday, Day 1, 1600-1740 UTC, non-technical session, will present: key climate information from Winter/Spring 2019/20 and the Arctic Summer 2020 outlook for 8 regions in the Arctic (see <u>ACF-5 draft</u> as explanation); and the Consensus Statement (see <u>ACF-5 draft</u> as explanation) which provides an overall summary for the circumpolar Arctic;
- May 28th 2020, Thursday, Day 2, 1600-1810 UTC, technical session, will provide greater detail on the Winter/Spring 2019/20 observations, and the modelled and consensus aspects of the temperature, precipitation and sea-ice information used to develop the ArcRCC products.
- Following each session, the organizing committee will distribute summaries of key points
- Recording sessions will be recorded and available later at <u>https://arctic-rcc.org/acf-spring-2020</u>
- Connection and session rules (same for 2 days):
 - 16:00 UTC: <u>https://bluejeans.com/431362831/9648?src=calendarLink</u>
 - BlueJeans video conferencing software is available for desktops and smartphones 5-15 and is installed automatically by clicking the above link (better install 5-15 minutes in advance)
 - 89 attendees registered for stable and better performance, you are very kindly asked to turn off your video and mute microphone for most of the time of the sessions, unless you intend to speak – during the sessions only moderators will be unmuted by default
 - During the sessions use the BlueJeans "CHAT function" to ask the questions, pass comments to moderator, everyone or particular person or rise your hand for a question – all notes will be properly considered by the chair(s), moderator(s) or experts

Access to ArcRCC products and session ppts

- All ArcRCC information (including the ACFs) is available at <u>https://arctic-rcc.org/</u>
- Fast access to ACF-5 information (ppts, pdf, docs) is organized at <u>http://wdc.aari.ru/acf5/</u>

ACF-5 Non-Technical Regional Briefing Agenda Wednesday May 27, 2020, 16:00 – 17:40 UTC

To determine your local time go to: <u>https://www.timeanddate.com/worldclock/timezone/utc</u> Intended Audience: Users interested in general climate conditions and forecasts for their region

	5	5
TIME	ITEM	DETAILS
16:00 (10')	 Welcome Introduce the Arctic Climate Virtual Forum, Agenda for next two days Format, how to ask questions and make comments using the chat function. Where to find the ArcRCC products and ppts 	Vasily Smolianitsky, Arctic and Antarctic Research Institute (AARI), Russia
16:10 (10')	Background on the ArcRCC-Network (ppt, pdf)	Helge Tangen, ArcRCC Network Coordinator Norwegian Meteorological Institute (NMI)
16:20 (20')	ArcRCC Non-technical regional climate briefing: Temperature, precipitation and sea-ice conditions North America (Alaska, Canada), Europe and Eurasia and Central Arctic - Review of winter 2019/2020, spring 2020 and Outlook for Summer 2020 (ppt, pdf)	 Rick Thoman (Alaska), International Arctic Research Center (IARC), Alaska Gabrielle Gascon (Canada), Environment and Climate Change Canada (ECCC) Halldór Björnsson (Europe), Icelandic Meteorological Office (IMO) Valentina Khan (Eurasia and Central Arctic), Hydrometcenter Moscow (HMC)
16:40 (15')	On-line discussion (with end-users): What impacts did your region face with changing climate conditions in winter 2019/20 and spring 2020?	Rick Thoman (moderator), IARC
16:55 (15')	On-line discussion (with end-users): Based on the summer 2020 outlook, what other potential risks were not highlighted that could affect your region?	Bill Appleby (moderator), ECCC
17:10 (10')	ArcRCC Consensus Statement for the Arctic: What it is and how it's created (ppt, pdf)	Eivind Støylen, NMI
17:20 (20')	Questions & Wrap-up	Vasily Smolyanitsky, AARI
17:40	End of the day	

ACF-5 Technical Regional Briefing Agenda Thursday May 28, 2020, 16:00 – 18:10 UTC

To determine your local time go to: <u>https://www.timeanddate.com/worldclock/timezone/utc</u> Intended Audience: Users interested in specifics of the climate observations and models

TIME	ITEM	DETAILS
16:00 (10')	 Welcome Introduce the Arctic Climate Virtual Forum Brief review of yesterday's agenda Format, how to ask questions and make comments Where to find the ArcRCC products and presentations 	Vasily Smolianitsky, AARI
16:10 (20')	 Arctic winter 19/20 and spring 2020 Seasonal Summary: Temperature, precipitation, sea-ice, ocean, land hydrology Review of observational and reanalysis data 	Vasily Smolyanitsky, AARI Gabrielle Gascon, ECCC
16:30 (5')	Using INTAROS project results for ArcRCC Northern Eurasia node: Access to seasonal summary data (ppt, pdf)	Evgeny Vyazilov, RIHMI-WDC, Obninsk
16:35 (15')	On-line discussion (with end-users)	Shanna Combley (moderator) U.S. National Weather Service (NWS)
16:50 (20')	 Temperature and Precipitation Introducing the multi-ensemble method Validation of the outlook for winter 19/20 and spring 2020 Review of model confidence for summer 2020 outlook 	Marko Markovic, ECCC
17:10 (15')	On-line discussion (with end-users)	Valentina Khan (moderator), HMC Moscow
17:25 (20')	 Sea-Ice Outlook for Summer 2020 Introducing the models Validation of outlook for winter 19/20 and spring 2020 Review of model confidence for summer 2020 outlook 	Scott Weese, ECCC
17:45 (15')	On-line discussion (with end-users)	Vasily Smolyanitsky (moderator), AARI Scott Weese (moderator) ECCC
18:00 (5')	Final thoughts & Wrap-up	Vasily Smolianitsky, AARI Helge Tangen, ArcRCC Network coordinator Anahit Hovsepyan, WMO
18:10	End of ACF-5	

Environment and Climate Change Canada

Introducing the Arctic Regional Climate Centre Network (ArcRCC-N)

https://www.arctic-rcc.org/

ACF Arctic Climate Forun

Helge Tangen Norwegian Meteorological Institute ArcRCC Network Coordinator

Arctic Climate Forum-5, May 27-28, 2020

SMHI

WEATHER CLIMATE WATER FEMPS CLIMAT EAU

FINNISH METEOROLOGICAL INSTITUTE

Weather · Climate · Water

Welcome to Arctic Climate Forum number 5 ACF-5

- A forum for Arctic Regional Climate Centre Network to meet stakeholders and users
- Usually: Every spring a face-to-face meeting, this spring converted to online meeting
- Every fall a virtual meeting like this one

Arctic Climate Forum

What's the difference?

- Conditions of the atmosphere over a short period of time
- Reported in terms of hours and days for a city, town, region

It answers these questions

- What is the temperature right now?
- Will I need a coat this afternoon?
- Will it snow this weekend?

- Average weather of a place over period of many years
- Tells us what's normal for an area.

It answers these questions

- What is an average winter like in Ottawa?
- Was 2015 the warmest summer on record?
- Will Tromsø have above normal temperatures this summer?

Climate is what you expect, weather is what you get

(sources: NOAA, NSIDC and WMO and websites)

Scale of Weather and Climate Information

Time Scale	Days	Weeks	Months (sub-seasonal)	Seasons (3 months)	Years	Decades	Centuri es
Weather or Climate Information		ather asting	Arctic Region Centr		Satellite and in- situ monitoring	Climate Moo	
Geographic Scale	Lo	cal	•			Global/F	Regional
Sources of Information	Meteor	onal ological <i>i</i> ices			 National Meteorological Services Arctic Report Card 	 IPCC assessi AC Wor Group assessi 	king

ArcRCC products are filling the seasonal gap using

- State of the art modeling for temperature, precipitation and sea-ice
- Regional expertise at Meteorological organizations
- By providing operational products for decision-makers every
 - May for the Arctic summer season
 - October for the Arctic Winter season

<nummer>

The Arctic Regional Climate Centre

NATIONAL		REGIO	NAL	CIRCUMPOLAR	
Countries	Meteorological Organizations	Regional Climate	Centres (RCCs)		
United States	NOAA				
Canada	ECCC	North American Node	Forecasting		
Denmark	DMI			Arctic	
Iceland	IMO	Northern		Regional Climate Centre	
Norway	NMI	European / Data Services Greenland Node	Data Services		
Sweden	SMHI				
Finland	FMI				
Russia	AARI	Northern Eurasia Node	Monitoring		

Collaboration/Networking across Arctic regional nodes and Meteorological Organizations

Weather · Climate · Water

ArcRCC Products produced each May and October

1. Arctic Consensus Statement:

Text and graphics that summarize the temperature, precipitation and seaice climate trends for the <u>past</u> season and forecasts for the <u>upcoming</u> season. A collaborate effort by the network in reviewing:

- Trends in the historical monitoring data
- Forecasts from the models
- Using Met/Ice climate expertise, fill gaps in the data

https://arctic-rcc.org/consensus-statements

1. Regional Summaries

 The same information that is in the consensus statement but organized by Arctic region and added information about potential impacts to regional users.

How is this information different than?

The Arctic Council's Arctic Monitoring and Assessment Programme (AMAP)

 i.e. the Snow Water Ice and Permafrost Assessment (SWIPA) report discusses trends and future predictions, updated once every 5-6 years

National Snow and Ice Data Centre –Arctic Report Card

Annual Summary of the Arctic climate over the past year

ArcRCC products are <u>ongoing</u> operational Arctic climate summary and forecast products that are updated every Winter and Summer

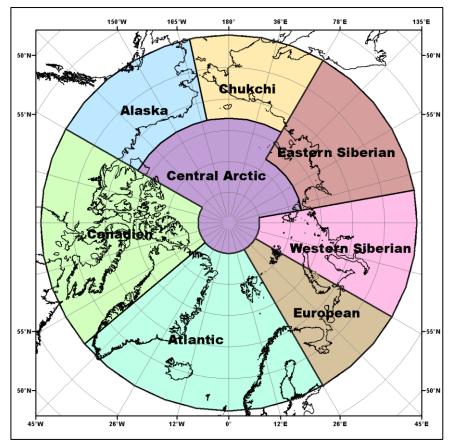
World Meteorological Organization

Weather · Climate · Water

Thank you!

www.wmo.int

Arctic Climate Forum May 2020


Arctic Climate Forum

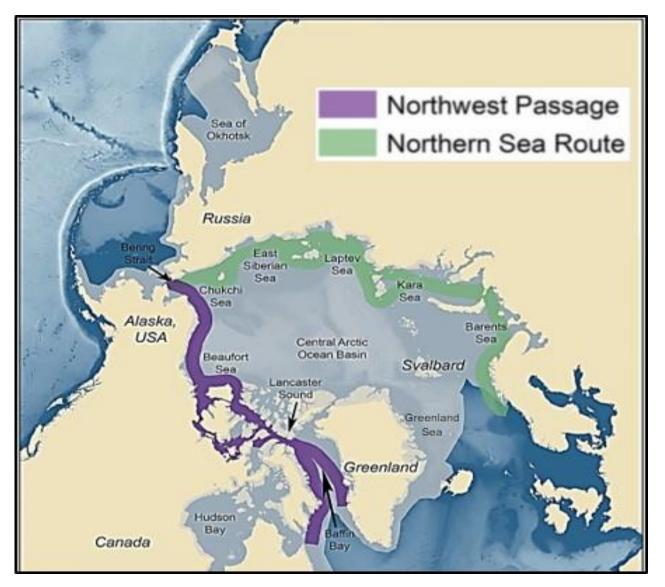
Non-Technical Review: Summary of Winter 2020 and Outlook for Summer 2020

Arctic Regional Climate Center

Temperature and Precipitation Terrestrial Regions

North America Node

- Alaska: Includes the Yukon and the Northwest Territories
- **Canadian**: Central and Eastern Canada and Western Greenland


European Node

- Atlantic: Western Greenland, Iceland, Svalbard and Scandinavia
- European

Eurasian Node

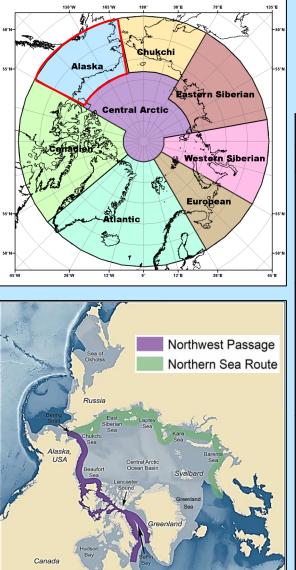
- Western Siberian
- Eastern Siberian
- Chukchi
- Central Arctic

Sea-Ice Navigational Regions

Sea-Ice Regions. Map Source: Courtesy of the U.S. National Academy of Sciences.

How this summary was developed

- 1. Available observations +
- 2. State of the art modeling for temperature, precipitation and sea-ice +
- 3. Adjustments based on regional expertise at <u>Arctic meteorological organizations</u> =

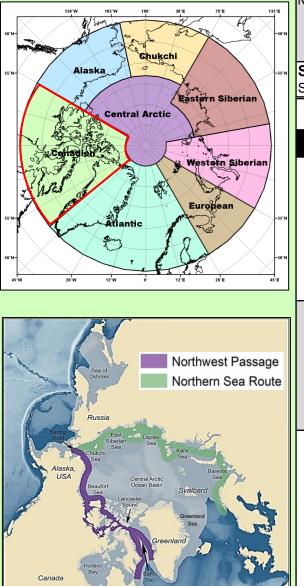

Information about potential impacts for regional users.

As a result, the regional outlooks may not always match the model output

North American Node

Alaska

Includes the Yukon and the Northwest Territories


	Sea	asonal Summary: Winte				
		Observations above (+) a				
		Near normal in Alaska, Yukon and			Coldest years	
Normal 1961-1990		the NWT	2004 (+2.9	, ()	1945 & 1955 (-	1.3 C)
Precipitation		Wetter in Alaska, Yukon and the	Wettest yea	r was	Driest year v	was
Normal 1961-1990		NWT	1951 (+65	%)	1968 (-46 9	%)
Sea	-lce	March maximum sea-ice extent: No	I rmal for the Be	ring sea		
		Chukchi and Beaufort seas were ice				
Ou	tlook: Jun	e, July August (JJA) 2020		Mul	ti Model Agreer	nent
		Forecast		High	Moderate	Low
т	Bering Sea, N	Warmer	\checkmark			
е	Western, coa					
m p	Northwest Te					
*	Beaufort Sea	No forecast	No agreement			
Р	Chukchi and	Beaufort seas	No forecast		No agreement	
r e	Northern Nor	thwest Territories	Drier			\checkmark
ci p	Bering sea					
*	Yukon, Alask	a	Wetter			\checkmark
		Chukchi Sea				
s	Break-up	Western Beaufort Sea	Earlier	·		
е	Break up			•	√	
a		Bering Sea			V	
- Ic	Min Ico Exte	Chukchi Sea	Below	\checkmark		
е	Min. Ice Exten Sept 2020	Beaufort Sea	Below normal		√	

Alaska & Western Canada RISKS AND IMPACTS

- Wildfires: Above normal temperatures may increase the threat of larger than typical wildfires.
- River Flooding: Above normal precipitation may increase the threat of river flooding in Alaska and the Yukon.
- Coastal Erosion and Flooding: Below normal sea ice extent in the Chukchi Sea may result in longer open water fetch and will greatly enhance erosion and the increase the risk of coastal flooding from late summer storms on unprotected west facing coasts of Alaska.
- Wildlife: Warmer summer temperatures increases the chances of negative impacts on fish, especially salmon that can not tolerate warm water once they enter fresh water rivers.
- Hunting: Early sea ice loss may result in an a shorter seasons for sea ice-based subsistence hunting activities.
- Shipping:
 - Early observations are already showing minimal sea-ice in the Bering Sea earlier than normal shipping activities are expected.
 - Early sea-ice break-up in the **Beaufort Sea** region may result in areas of old ice becoming become mobile earlier in the season increasing shipping hazards.

Canada

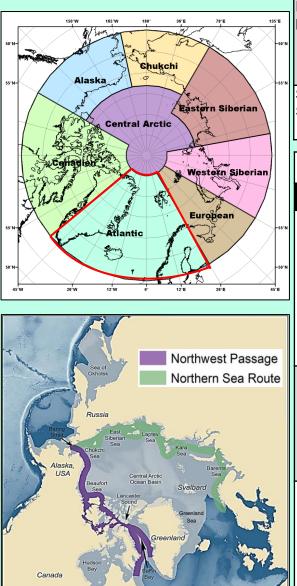
Includes central and eastern Canada and Western Greenland

	Seasonal Summary: Winter 2019 & Spring 2020								
			Observations above (+)	and	below (-)	normal			
	perature		Near to below normal		Warmest		-		
Normal 1961-1990 Precipitation • Near normal in Nunavut			ear normal in Nunavut's		2012 (+ Wettest y			1972(-1.6°C) Driest year was	
	al 1961-1990	Q	ikiqtaaluk region		2005 (+2		1977 (-2		
			r <mark>ier</mark> in Nunavut's Kitikmeot an valliq regions, Nunavik and	d					
			unatsiavut						
Sea- Since	Ice e 1979		h maximum sea-ice extent: B Labrador sea. All other areas			mal in th	e Gulf of St. Lav	wrence	
Ou	ıtlook: Jur	ne, J	uly August (JJA) 2020			Mult	i Model Agreer	ment	
			Forecast			High	Moderate	Low	
	Western Gre	eenla	nd			\checkmark			
т	Nunatsiavut, Nunavik, Nunavut			,	Warmer		\checkmark		
e m	Baffin Bay, Davis Strait, Hudson Strait, Labrador Sea						√		
p	Western Hudson Bay, Eastern Hudson Bay				older to Normal		\checkmark		
P r			luk region, northern Hudson Western Greenland		Wetter			\checkmark	
e ci p	Northeast N Mountains r		k and Nunatsiavut (Torngat), Labrador		Drier			\checkmark	
			ot and Kivalliq regions, Baffin dson Bay, Labrador Sea	No	o Forecast	No Agreement			
s			Baffin Bay, Davis Strait, Labrador Sea		Earlier	~			
e a	Break-u	p	Western Hudson Bay		Near normal		\checkmark		
- Ic			Eastern Hudson Bay		Later		\checkmark		
е	Min Ice Exte Sept 2020	ent	Canadian Arctic Archipelago		Below normal		\checkmark		

Central and Eastern Canada, Western Greenland RISKS AND IMPACTS

- Wildfires: Above-normal temperatures and drier than normal conditions forecasted for Labrador may lead to an increased threat of wildfires
- River flooding:
 - Wetter conditions forecasted may increase the threat of river flooding in Nunavut's Qikiqtaaluk region.
 - Below-normal snowfall throughout the winter and spring should reduce the risk of flooding this year in Labrador.
- Wildlife: Wetter conditions forecasted may lead to increased freezing rain in the early summer affecting wildlife foraging in Nunavut's Qikiqtaaluk region.
- Hunting: Early sea-ice loss may result in a shorter season for sea icebased subsistence hunting activities.

Shipping


 Northwest Passage: light ice conditions may be experienced in the southern route of the Northwest Passage in August and in the northern route by early September. However, light ice conditions may allow old ice from the Canadian Arctic Archipelago to become mobile earlier in the season increasing navigation risks.

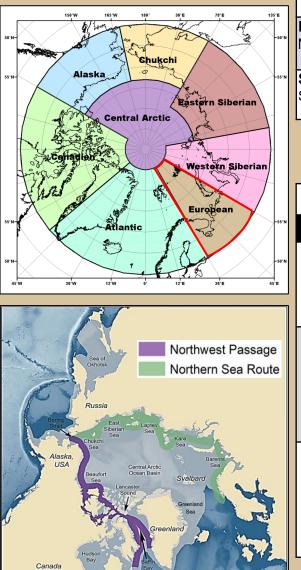
• Hudson Bay:

- Faster than normal sea ice break-up is currently underway in Hudson Strait with significant areas of open water expanding in the northern portion of the strait.
- Near normal break-up is expected for western Hudson Bay.
- Later than normal break-up is expected for eastern Hudson Bay. Thicker ice coverage along with colder temperatures forecasted could lead to a more challenging navigation season in the eastern half of Hudson Bay.
- Baffin Bay: light ice conditions may be experienced in Baffin Bay and no specific hazards are anticipated. The presence of an ice bridge in Nares Strait well into the spring normally cuts off the inflow of old ice from the Arctic Ocean into northern Baffin Bay, limiting the import of old ice into the region.
- Labrador Coast: ice coverage along the Labrador coast has been normal throughout the winter and spring showing near normal ice extent but lower concentrations. Break-up in Lake Melville is expected to be normal.

Nordic Node

Atlantic

	Seasonal Summary: Winter 2019 &							g 2020	
				Observations above	e (+)				
	Temperature• Warmer in ScandinaviaNormal 1961-1990• All other regions normal				Warmest year was 2003 (+1.9°C)		Coldest yea 1965 (-0.7		
0°N	 Precipitation Wetter in Iceland and Norwa Drier eastern Greenland and Svalbard All other regions normal 								
5°N	Sea-Ice March maximum sea-ice exter Since 1979 - Below to near normal					reenland sea			
	Ou	tlook: Ju	ne, Jı	lly August (JJA) 2	2020	0		Model Agreen	
				Forecast	_		High	Moderate	Low
5°N		Southern G	Greenlar	nd			\checkmark		
0°N	T e			orthern and continental and Baltic sea		Warmer		√	
	m	Iceland, Sc	andina	<i>r</i> ia					×
٦	р	North Atlan	ntic			Colder	\checkmark		
		Greenland	and No	rwegian seas		No Forecast		No Agreement	
	P r	North Atlan Baltic sea	ntic, Nor	th sea and southern		Drier			\checkmark
	e ci p Norwegian and southern Baltic seas, continental Greenland, Iceland, and Scandinavia			No Forecast		No Agreement			
	S Break-up e Min Ice Extent - Sept 2020 Greenland Sea			Later		\checkmark			
			A	Above Normal	\checkmark				
	е								

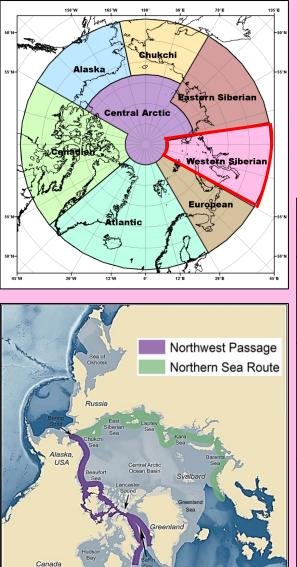

Atlantic RISKS AND IMPACTS

- Wildfires:
 - Warmer temperatures and drier than normal conditions forecasted for Scandinavia indicates a potential for Wildfires, although the forecast agreement is low.
 - Trends in land cover in Iceland resulting from long term warming are increasing the risk of wildfires associated with droughts, with one large event so far this spring.
- Flooding:
 - Late warming and large amounts of snow accumulation indicates a high risk of floods for inland Norway.
 - A combination of above normal snow accumulation and a late melt season in the highlands of northern Iceland may result in a greater risk for flooding in the coming weeks.
- Permafrost: The continued trend of warmer temperatures in Svalbard leads to the thawing of the permafrost, resulting in a greater risk of landslides which may impact stability of some structures. In general this risk is also increasing in Iceland and Scandinavia due to recent warming trends

Atlantic RISKS AND IMPACTS CONTINUED...

- Wildlife / Hunting: Prolonged thick snow cover in Northern Scandinavia / Lapland may impact Reindeer not reaching the lichen that is under the snow cover.
- Shipping:
 - Svalbard: Warmer conditions and generally near normal sea-ice around the Svalbard region may indicate normal shipping activities in this region.
 - Iceland: Sea-ice concentrations are unusually low in the Denmark Strait even though the marginal ice zone (MIZ) extent is near normal. The extent of the MIZ extent may pose a risk to shipping.

European



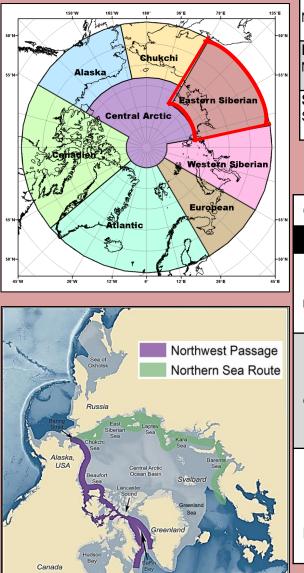
Seasonal Summary: Winter 2019 & Spring 2020								
	Observations above (+) and	d below (-) normal						
Temperature Normal 1961-1990	Warmer for the entire region	Warmest year was 2013 (+2.8°C)	Coldest year was 1969 (-1.6°C)					
Precipitation Normal 1961-1990	Wetter for the entire region	Wettest year was 1981 (+28 %)	Driest year was 1980 (-32 %)					
Sea-Ice March maximum sea-ice extent: Barents sea below normal Since 1979								

Ou	itlook: June, Ju	i Model Agreen	nent			
		Forecast		High	Moderate	Low
т	Southern Barents	Sea		\checkmark		
e m	Murmansk/White	Sea/Continent	Warmer			\checkmark
р	Northern Barents	Sea	No forecast		No agreement	
P r ci p	Entire Region		No forecast		No agreement	
S e	Break-up	Northern Devente	Later	\checkmark		
a - Ic e	Min Ice Extent Sept 2020	Northern Barents sea	Above Normal			~

Eurasian Node

Western Siberia

Sept 2020

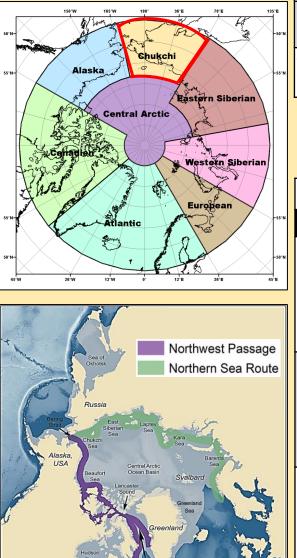

е

	Seas	j 2020				
Ten	nperature	Observations above Warmer for the entire reg			Coldest year	was
Normal 1961-1990		2016 (+	2016 (+3.6°C)		°C)	
Precipitation Normal 1961-1990		Wetter for the entire reg	ion Wettest y 2002 (+ 2		Driest year 1946 (- 27.0	
	- Ice Ma e 1979	rch maximum sea-ice exte	ent: Kara Sea, ice cov	vered	•	
00	itlook: June,	July August (JJA)	2020	Multi	i Model Agreei	ment
		Forecast		High	Moderate	Low
т	Western Kara	Sea		\checkmark		
l e			Warmer			
m	Continent		Warmer		\checkmark	
-	Continent Eastern Kara	Sea	Warmer		√	√
m p P		Sea	Warmer		√	√ √
m p	Eastern Kara S	Sea /urmansk coast	-		√ No agreement	
m p P r e ci p S	Eastern Kara S Continent Barents sea, N		Wetter			
m p r e ci p	Eastern Kara S	/urmansk coast	Wetter No forecast			

Western Siberia RISKS AND IMPACTS

- Wildfires: A risk of forest fires is possible in the State reserve "Verkhne-Tazovsky" region at the beginning of the summer due to above normal temperatures and below normal precipitation forecasted in the north of West Siberia.
- Flooding: The threat of river flooding in Ob' and Yenisei is uncertain.
- Coastal Erosion: Forecasted high temperatures may lead to continued permafrost degradation and coastal erosion.
- Wildlife/Hunting: The reduction in the sea-ice extent and permafrost degradation in tundra may create difficulties for "keystone" species, e.g. polar bears, caribou, whales etc.
- Shipping: Shipping in the Northwest Passage from west to east is expected to start earlier than normal with safe and easy ice conditions for independent navigation of large-capacity tankers, gas carriers and bulk vessels. However, above normal temperatures may increase the number of icebergs due to glacier calving in the Islands Novaya Zemlya and Severnaya Zemlya, creating navigation hazards.

Eastern Siberia


Se	Seasonal Summary: Winter 2019 & Spring 2020								
	Observations above (+) and below (-) normal								
Temperature Normal 1961-1990	Warmer for the entire region	Warmest year was 2019 (+2.9°C)	Coldest year was 1989 (-1.2°C)						
Precipitation Normal 1961-1990	Wetter for the entire region	Wettest year was 1988 (+25.2%)	Driest year as 1967 (-21.6%)						
Sea-Ice March maximum sea-ice extent: Laptev sea, ice covered Since 1979									

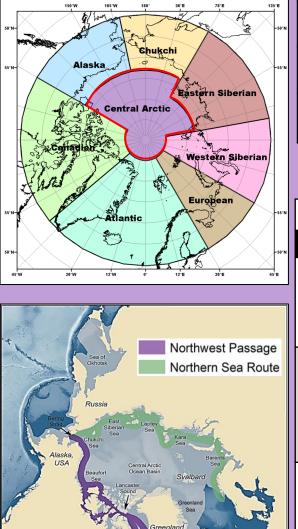
55°N	Ou	ıtlook: June, 、	Multi Model Agreement				
			Forecast		High	Moderate	Low
50°N	T e m p	Laptev sea and	continental regions	Warmer		✓	
,	P r e ci p	Laptev Sea and	Continent	Wetter			~
	S	Break-up		Early			\checkmark
	e a - Ic e	Min Ice Extent Sept 2020	Laptev Sea	Below Normal	~		

Eastern Siberia RISKS AND IMPACTS

- Wildfires: A risk of forest fires is possible for the northwest of Yakutiya region at the beginning of the summer due above normal temperatures and below normal precipitation forecasted.
- Flooding: The threat of flooding of main Arctic rivers (Lena, Yana, Indigirka, Kolyma) is uncertain.
- Coastal Erosion: Forecasted high temperatures may lead to continued permafrost degradation and coastal erosion.
- Wildlife/Hunting: The reduction in the sea-ice extent and permafrost degradation in tundra may create difficulties for "keystone" species, e.g. polar bears, caribou, whales etc.
- Shipping: Shipping across the Northern Sea Route is expected to be start earlier than normal with safe and easy ice conditions for the independent navigation of large-capacity tankers, gas carriers and bulk vessels. The navigation season on estuaries of main Arctic rivers (Lena, Yana, Indigirka, Kolyma) for cargo delivery by vessels type "river-sea" will start earlier.

Chukchi

Canada


Seasonal Summary: Winter 2019 & Spring 2020						
Observations above (+) and below (-) normal						
Temperature Normal 1961-1990	Warmer to near normal	Warmest year was 2007 (+2.9°C)	Coldest year was 1949 (-1.3°C)			
Precipitation Normal 1961-1990	normal	Wettest year was 1954 (+39.6 %)	Driest year was 1982 (-39.8%)			
Sea-Ice Since 1979						

Outlook: June, July August (JJA) 2020				Multi Model Agreement		
Forecast				High	Moderate	Low
T e m p	Bering sea Eastern and Southern continental regions		Warmer	\checkmark		
					\checkmark	
	Eastern Siberian Sea, Chukchi sea, Northern continental regions					\checkmark
P r ci p	Bering Sea and continental regions		Wetter			\checkmark
	Eastern Siberian Sea, Chukchi sea		No forecast	No agreement		
S	Break-up	Chukchi Sea	Early	\checkmark		
e a - Ic e		East Siberian				\checkmark
	Min Ice Extent Sept 2020	Chukchi Sea	Below Normal	\checkmark		
		East Siberian			\checkmark	

Chukchi RISKS AND IMPACTS

- Wildfires: Due to above normal precipitation forecasted wildfires are not expected
- Flooding: Above normal precipitation may increase the threat of river flooding in Indigirka and the Kolyma.
- Coastal Erosion: A possible increase of storm activity may negatively impact coastal erosion. Forecasted high temperatures may lead to continued permafrost degradation and coastal erosion.
- Wildlife: Possible increase of storm activity at the end of summer may impact migratory birds and fish passages.
- Hunting: Possible increase of storm activity may negatively impact hunting and fishing.
- Shipping: Shipping across the Northern Sea Route is expected to be start earlier than normal with safe and easy ice conditions for the independent navigation of large-capacity tankers, gas carriers and bulk vessels. Cargo navigation for all vessel classes to the Chukchi sea from the Pacific Ocean will start earlier.

Central Arctic

Canada

Seasonal Summary: Winter 2019 & Spring 2020					
Observations above (+) and below (-) normal					
Temperature Normal 1961-1990	Warmer	Warmest year was 2012 (+2.0°C)	Coldest year was 1963 (-0.7°C)		
Precipitation Normal 1961-1990	n/a	Wettest year was 1989 (+27%)	Driest year was 1998 (-16%)		
Sea-Ice Since 1979	March maximum sea-ice extent: Region is covered in sea-ice				
	Observations Temperature Normal 1961-1990 Precipitation Normal 1961-1990 Sea-Ice	Observations above (+) and below (-) normalTemperature Normal 1961-1990WarmerPrecipitation Normal 1961-1990n/aSea-IceMarch maximum sea-ice extent: F	Observations above (+) and below (-) normalTemperature Normal 1961-1990WarmerWarmest year was 2012 (+2.0°C)Precipitation Normal 1961-1990n/aWettest year was 1989 (+27%)Sea-IceMarch maximum sea-ice extent: Region is covered in set		

-55°N	Ou	Outlook: June, July August (JJA) 2020			Multi Model Agreement		
-50°N		Forecast			High	Moderate	Low
45'E	T e	T e m pNear the Alaskan, Chukchi, Eastern 		Warmer		\checkmark	
							\checkmark
je ite	r e ci			No forecast	No agreement		
	S e a - Ic e	Break-up	No Forecast				

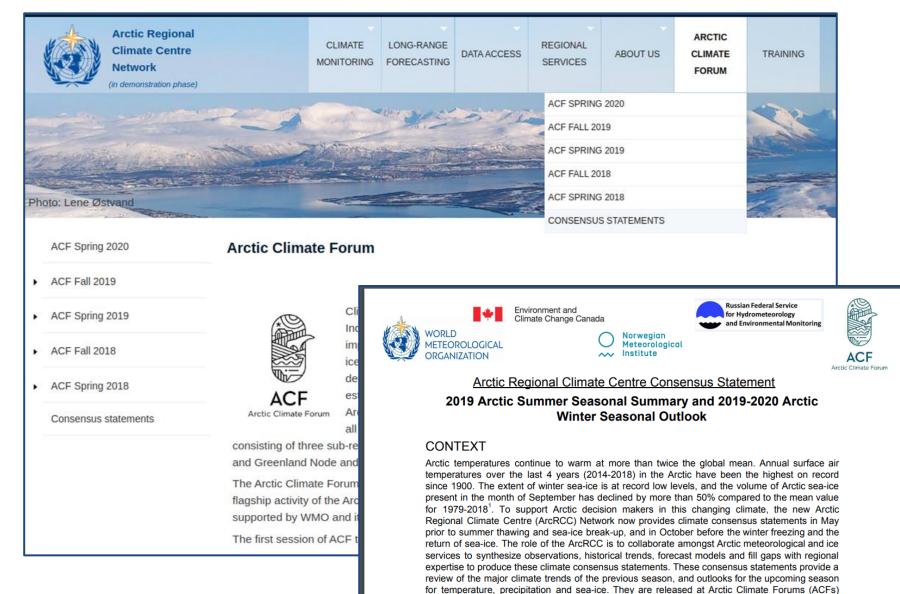
Discussion on regional impacts

Arctic Regional Climate Center

Arctic Climate Forum May 2020

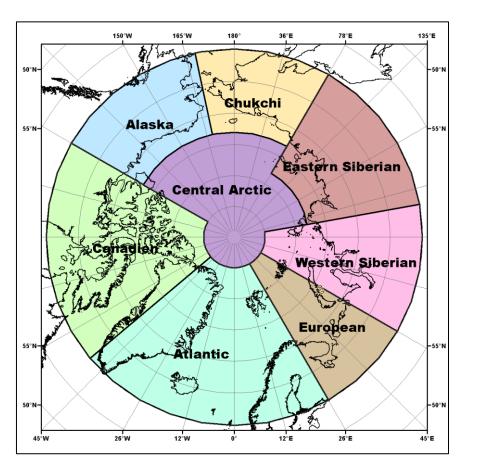
Arctic Consensus Statement: Summary of Winter 2020 and Outlook for Summer 2020

Arctic Regional Climate Center

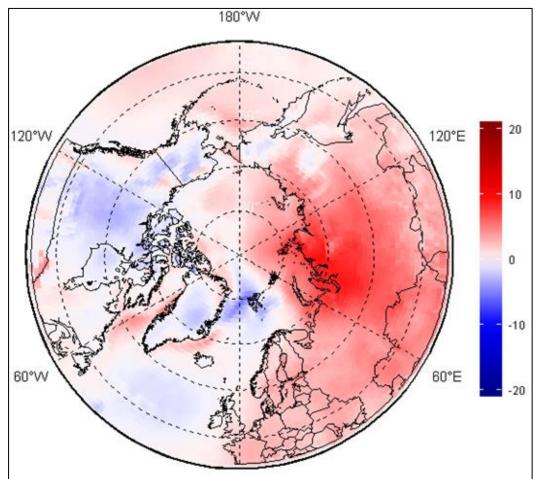

What is ArcRCC Consensus Statement?

A collaborative product developed amongst Arctic meteorological and ice services to synthesize observations, historical trends, forecast models and fill gaps with regional expertise.

The consensus statement provides:


- a review of the major Arctic climate trends of the previous season,
- verification of the previous seasons outlooks and
- outlooks for the upcoming season for temperature, precipitation and sea-ice.

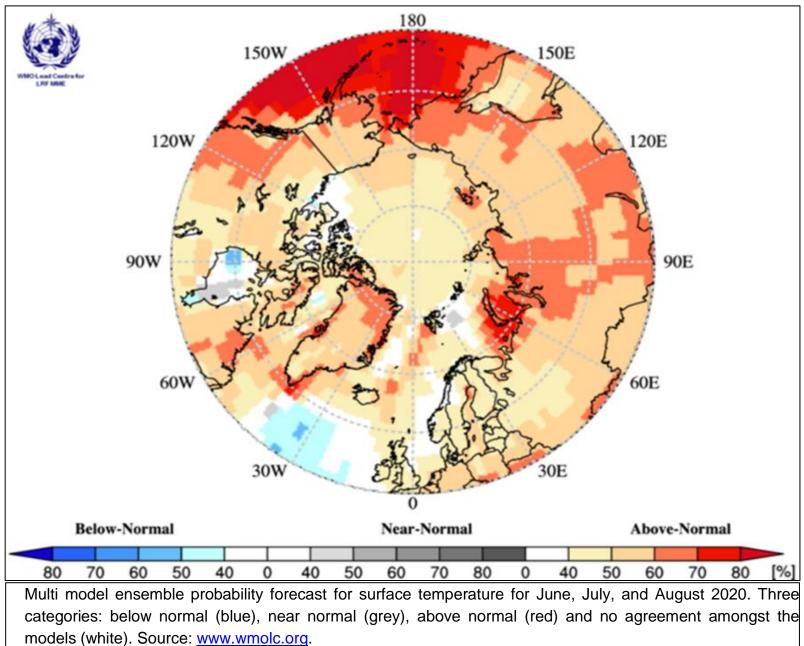
Will be published on https://arctic-rcc.org/acf


with Arctic users in May, and through a virtual on-line ACF in October.

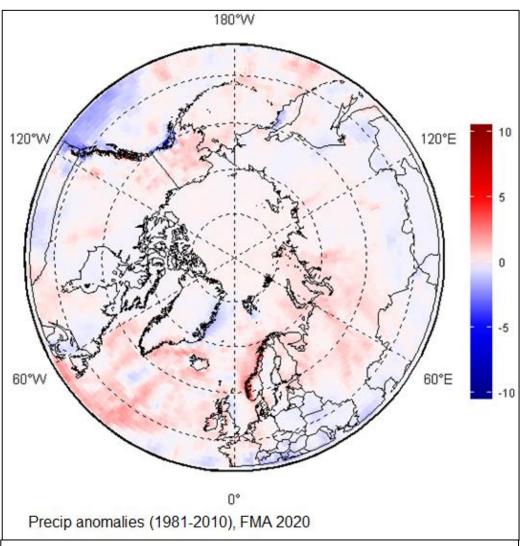
Circumpolar Arctic Perspective Temperature & Precipitation

- Outlooks are based on eight WMO Long-Range Forecasts models.
- All the model forecasts are compared and areas where all eight models
 - agree = high forecast confidence
 - disagree = low forecast confidence
- Called a multi-model ensemble (MME) approach
- A methodology reputed as providing the most reliable objective forecasts.

TEMPERATURE: Observations from Winter 2020


February, March, and April (FMA) 2020 surface air temperature anomaly based on the 1981-2010 reference period. Red indicates warner than normal temperature, and blue indicates cooler than normal temperatures. Map produced by the Hydrometcenter of Russia <u>https://meteoinfo.ru/</u> Data source: ERA-5.

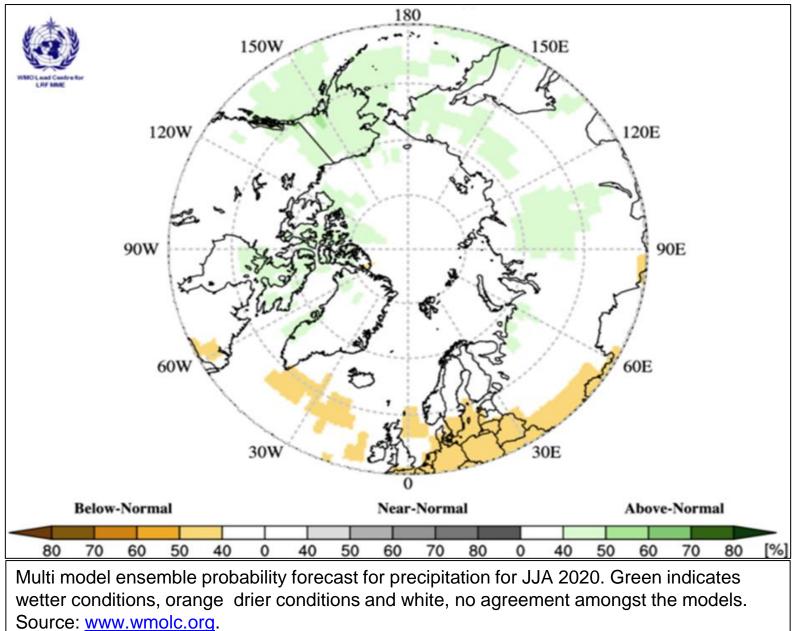
- Higher than normal in the eastern hemisphere
- Lower than normal in the western hemisphere
- Scandinavia and the majority of the Eastern and Western Scandinavia regions experienced warmer than normal conditions (red areas)
- Parts of Eastern and Western Siberia saw their fifth warmest FMA since the start of the record in 1949.
- Canada, Alaska, Greenland, and the North Atlantic Ocean experienced near normal (white areas) or slightly below normal (light blue) conditions.


TEMPERATURE: Winter 2020 *How did the forecasts perform ?*

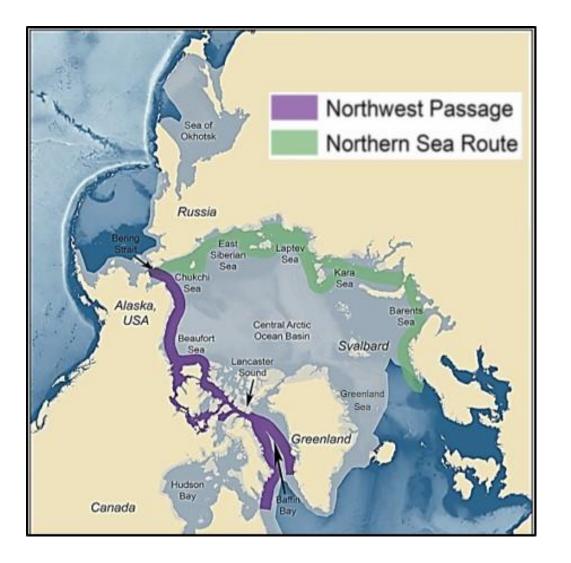
Regions	MME Temperature Forecast Agreement	MME Temperature Forecast	Observations NCAR CFSR Reanalysis	MME Temperature Forecast Accuracy
Alaska	Low	Above normal	Near normal	Low
Chukchi	High	Above normal	Above to near normal	Moderate
Eastern Siberia	High	Above normal	Above normal	High
Western Siberia	High	Above normal	Above normal	High
European	Moderate	Above normal	Above normal	High
Atlantic	Moderate	Mostly near normal	Above normal (Scandinavia only)	Moderate
Canada	Low	Above normal	Near to below normal	Low
Central Arctic	High	Above normal	Above normal	High

TEMPERATURE: Outlook Summer 2020

PRECIPITATION: Observations from Winter 2020

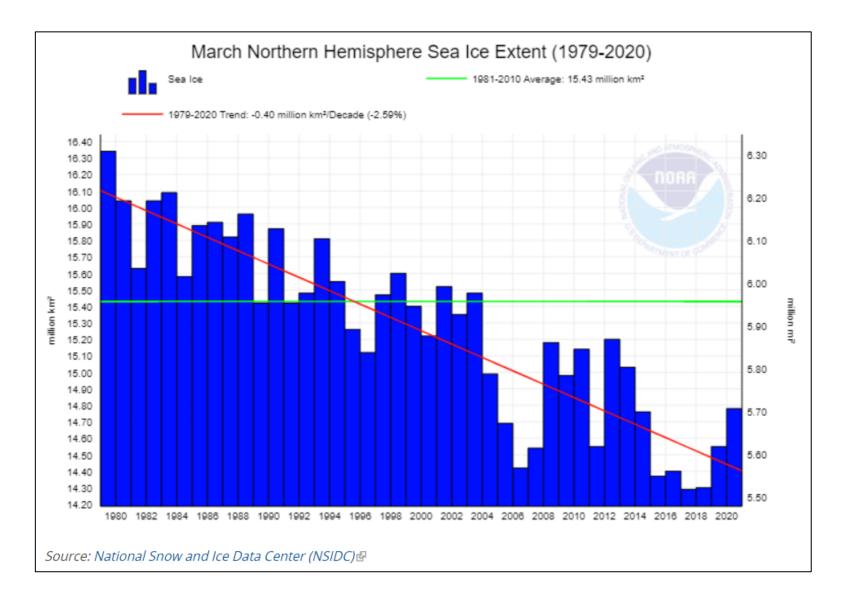

February, March, and April (FMA) 2020 precipitation based on the 1981-2010 reference period. Red indicates wetter than normal conditions, and blue indicates drier than normal conditions. Map produced by the Hydrometcenter of Russia <u>https://meteoinfo.ru/</u> Data source: ERA-5.

- Wetter than average conditions were observed across a majority of Arctic region (red areas).
- Only a few isolated areas, including the northeastern coast of Greenland, northern Canada, and a small swath over southern Alaska, experienced drier than average conditions (blue areas)


PRECIPITATION: Winter 2020 How did the forecasts perform ?

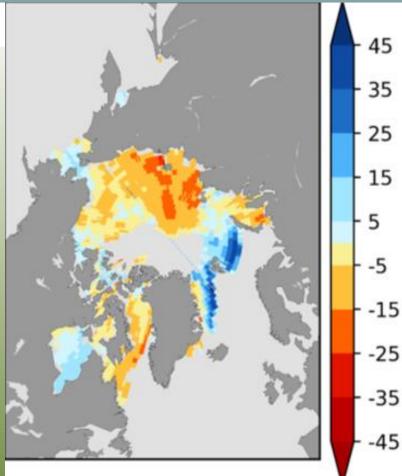
Regions	MME Precipitation Forecast Agreement	MME Precipitation Forecast	Observations NCAR CFSR Reanalysis	MME Precipitation Forecast Accuracy
Alaska	Moderate	Above normal	Above normal	High
Chukchi	Moderate	Above normal	Near normal	Low
Eastern Siberia	Moderate	Above normal	Above normal	High
Western Siberia	Moderate	Above normal	Above normal	High
European	Moderate	Above normal	Above normal	High
Atlantic	Moderate	Above normal (continental regions only)	Above normal (continental regions only)	High
Canada	No agreement	No forecast	Near normal in the south and west, below in the center	N/A
Central Arctic	No agreement	No forecast	N/A	N/A

PRECIPITATION: Outlook Summer 2020


Sea-Ice: From a Circumpolar Perspective

Maximum sea-ice extent, volume and thickness is normally reached each year in the Arctic during the month of March.

The forecast for March 2020 sea ice extent was based on output from CanSIPSv2, an MME of two climate models


SEA-ICE Extent: Observations from Winter 2020

SEA-ICE: Winter 2020 How did the forecasts perform ?

Regions	CanSIPS Sea-Ice Forecast Confidence	CanSIPS Sea- Ice Forecast	Observed Ice Extent	CanSIPS Sea-Ice Forecast Accuracy
Bering Sea	Low	Below normal	Normal	Low
Sea of Okhotsk	Low	Below to near normal	Below to near normal	High
Barents Sea	Low	Near normal	Below normal	Low
Greenland Sea	High	Near normal	Below to near normal	Moderate
Gulf of St. Lawrence	Low	Below normal	Below to near normal	High
Labrador Sea	Moderate	Below normal	Below to near normal	Moderate

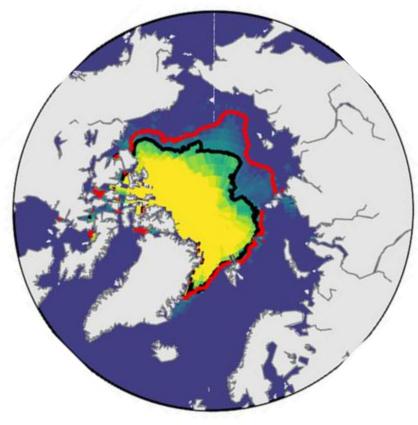
SEA-ICE: Break-up Outlook 2020

Forecast for the 2020 spring/summer break-up expressed as an anomaly (difference from normal) Source: CanSIPS (ECCC)

What is Normal break-up?

- The first day in a 10 day period when the ice concentration goes below 50%
- based on climatological period (2009-2017)

Break-Up Categories:


- Late break-up
- Near normal break-up
- Early break-up

	Regions	CanSIPS Sea-Ice Forecast Confidence	CanSIPS Sea-Ice Break-up Forecast	
	Baffin Bay	High	Early	
days	Barents Sea	High	Late in northern section	
	Beaufort Sea	High	Early	
	Bering Sea*	Moderate	Near normal to late	
	Chukchi Sea	High	Early	
	East Siberian	Low	Early southern section, near normal northern section	
	Greenland Sea	High	Late	
	Hudson Bay	Moderate	Late eastern half, near normal western half	
	Kara Sea	Moderate	Early in the west, near normal in the east	
	Labrador Sea	High	Early	
	Laptev Sea	Low	Early	

Minimum SEA-ICE Extent: Outlook September 2020

observed mean ice edge (2011-2019)

forecast median ice edge

Regions	CanSIPS Sea-Ice Forecast Confidence	CanSIPS Sea-Ice Forecast
Barents Sea	Low	Above normal (northern section)
Beaufort Sea	Moderate	Below normal
Canadian Arctic Archipelago	Moderate	Below normal
Chukchi Sea	High	Below normal
Eastern Siberian Sea	Moderate	Below normal
Greenland Sea	High	Above normal
Kara Sea	High	Below normal
Laptev Sea	High	Below normal

September 2020 probability of sea ice at concentrations greater than 15% from CanSIPSv2 (ECCC). Forecast median ice extent from CanSIPSv2 (black) and observed mean ice edge 2011-2019 (red).

Questions & Wrap Up

Arctic Regional Climate Center

WEATHER CLIMATE WATER TEMPS CLIMAT EAU

Thank you! Merci! Takk! Спасибо! Tak! Tack! Kiitos! þakka þér fyrir! Naqurmiik ! Qaĝaasakuq ! Grazie! Giitu! Vielen Dank! Dhanyavaad !

WMO OMM

World Meteorological Organization Organisation météorologique mondiale