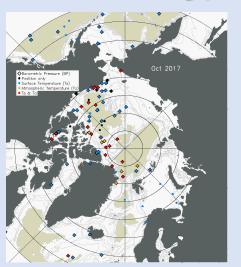
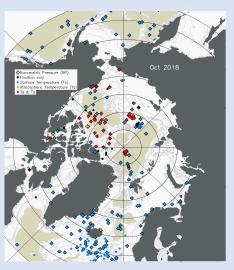
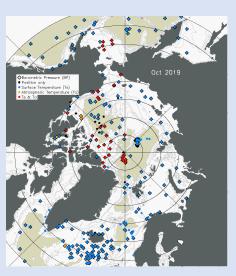
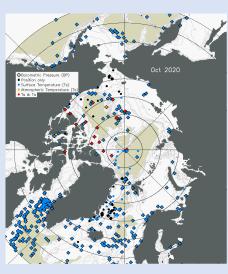


Technological input of Russia to operational meteorological monitoring of the Arctic using drifting buoys

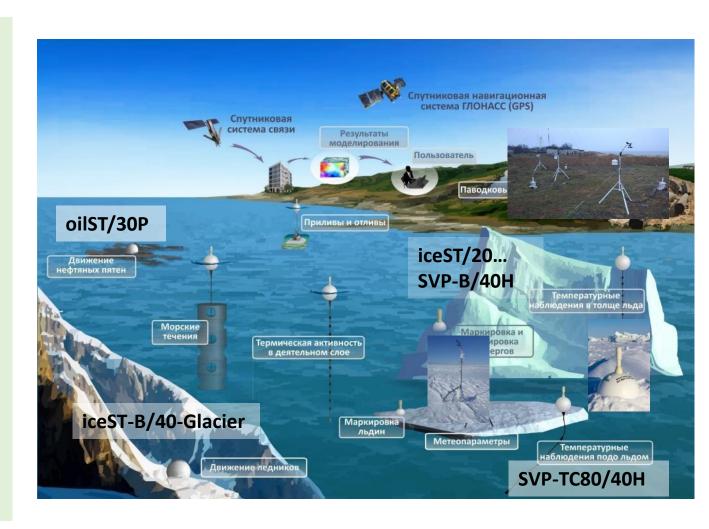

Smolyanitsky V.¹ vms@aari.aq,


Motyzhev S²,Lunev E.², Tolstosheev A²., Smirnov K.¹, Sokolov V.¹, Nesterov A.¹, Bezgin A.², Bykov E.², Volikov M.²


¹ Arctic and Antarctic Research Institute (AARI)
² Marlin-Yug Ltd


International projects in the Arctic presently implemented by AARI and Marlyn-Yug

YOPP Special (SOP) and Target (TOP) Observing periods (2018 – 2022)

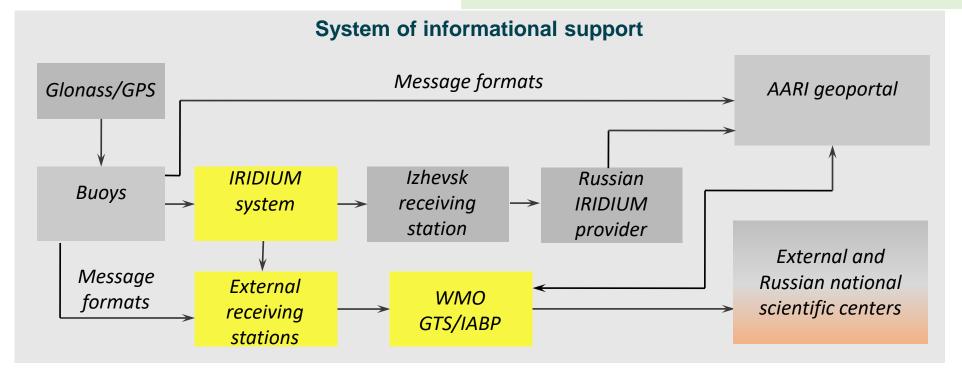

MOSAIC (2019 - 2021)

- International Arctic scientific projects YOPP and MOSAiC are widely using different types of ice and ocean data buoys
- ❖ To support the projects AARI in collaboration with Marlyn-Yug is actively developing measuring and informational techniques to implement activities on a high level resulting in a growing number of drifters in Eurasian Arctic since 2018
- **❖** Techniques include three major components: measuring, informational and logistical

Measuring component meets DBCP standards and includes more than 30 types of instruments by Marlyn-Yug https://marlin-yug.com/en/home/

- All the buoys can operate in the Arctic for one year at least
- Capabilities of buoys allow measuring
 - meteorological parameters in nearsurface atmosphere
 - hydrological
 parameters within the
 ocean active layer or
 below the ice
 - ✓ parameters of ice (movement, temperature processes, freezing/melting).

Informational (delivery) component

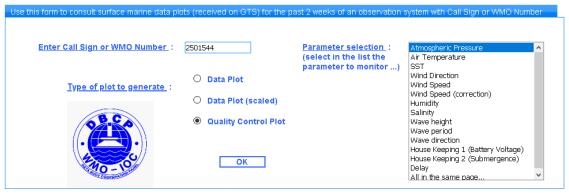

Iridium station in Izhevsk, Russia (since 2016)

ARGOS-CLS portal

- ❖ Informational components allow data transfer via Iridium and Argos-2 satellite telemetry
- ❖ Information is delivered to external international and Russian national data centers for processing and global distribution via WMO GTS or other portal
- New data formats were created for transfer and processing of data from new types of buoys with temperature strings with formats introduced in the processing centers

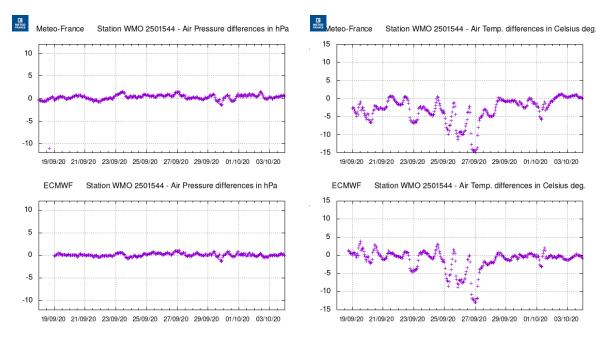
Logistical component and lifetime

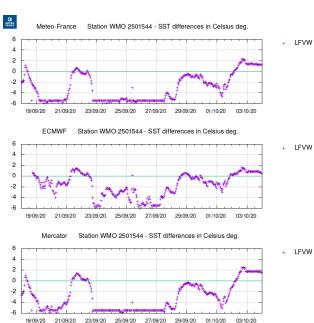
- Logistical component is used for delivery and deployment of buoys on ice or water
- Helicopter Mi-8 on ice (Barneo-2018, 2019) campaigns (***, the hardest)
- ❖ Helicopter KA-32 on ice, from board R/V "on ice and water ("TransArctic-2019") (**)
- Manually on ice or glacier at Cape Baranova AARI observatory (2018, 2019*)
- from board R/V on water ("TransArctic-2019", other various campaings in 2018-2020 (*)
- from board icebreaker "Kapitan Dranitsyn" on ice (MOSAiC supply leg #2) (***)


Lifetimes:

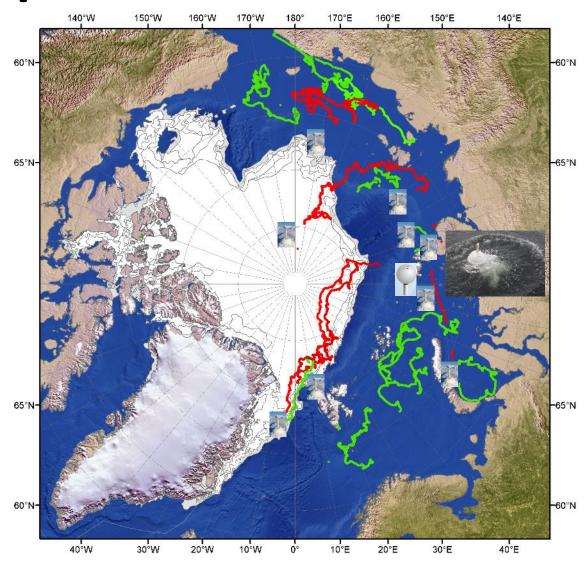
- 503 d longest (FJL and Svalbard waters, Apr 2019-Aug 2020)
- 1 week shortest (pulled under ice in Barents sea)
- Lifetime greatly depends whether or not the buoy will survive approaching ice edge or gain stable position during initial ice formation

Quality control after deployment is done collaboratively by Marlyn-Yug and AARI mostly through the EUMETNET portal


http://esurfmar.meteo.fr/qctools/


Surface Marine Data and QC Plots

LFVW


+ LFVW

Key highlights for present moment

- Main purposes of the national buoy program remain to support:
 - ✓ the YOPP Operational Periods
 - ✓ operations in Eurasian Arctic
- Totally 22 Lagrangian SVP-B/40H type (air pressure, air temperature, surface ice/snow/water temperature, GPS positioning, ARGOS communication) buoys were in operation during last year (02/10/2019 04/10/2020)
- Totally 9 are active as of Oct 4th 2020

Summary conclusions

- ❖ 29 drifting barometric SVP-B buoys of Marlyn-Yug design with SST and SAT sensors were deployed in 2018-2020 in Eurasian Arctic Seas to support the YOPP SOP within Eurasian Arctic
- Other installations included 12 iceST drifters for MOSAiC campaign, iceST-glacier(s) at Cape Baranova AARI observatory on Severnaya Zemlya, etc
- Statistics describing the SVP-B performance in seasonal cycle, allowed to conclude that
 - ✓ Operational reliability of the buoy is determined by the type of buoy (drogue or not), location (on ice/in water), season (spring, summer, winter)
 - ✓ problems with SVP-B buoys, when working in polar conditions, are the same as
 for other types of the buoys in the region
 - ✓ low cost of the SVPs allows to create network with excessive density, in the expectation of failure of some of the buoys
 - ✓ Improvement of operational reliability can be gained by molded cases of highstrength polycarbonate plastic, use of conical shaped cases etc
- Further steps will include new types of buoys and buoy networks with improved operational reliability, possibly with adaptive capabilities of operation

Thank you for attention!

