WORLD METEOROLOGICAL ORGANIZATION

INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (OF UNESCO)

JOINT WMO/IOC TECHNICAL COMMISSION FOR OCEANOGRAPHY AND MARINE METEOROLOGY (JCOMM)

ETMSS-III/Doc. 6.2 (03.IX.2010)

EXPERT TEAM ON MARITIMÉ SAFETY SERVICES

THIRD SESSION

ITEM 6.2

ST PETERSBURG, RUSSIAN FEDERATION 4 TO 8 OCTOBER 2010

Original: ENGLISH

CATALOGUE OF MARINE & OCEANOGRAPHIC PARAMETERS

(Submitted by the Secretariat)

Summary and Purpose of Document

This document provides a short background information on MSI in graphical/numerical form and introduce the draft Catalogue of Met-ocean Feature Object Classes and Attributes

ACTION PROPOSED

The participants of the session are invited to:

- (a) Note and comment on the information provided as appropriate;
- (b) Review and enrich the draft Catalogue of Met-ocean Feature Object Classes and Attributes.

BACKGROUND

Since 1999, JCOMM has requested ETMSS to work on the implementation of graphical/numerical MSI broadcast within the GMDSS. Despite some limited studies and discussions, the Team has failed to consider this main issue. In the same context, the WMO EC-LX (June 2008) emphasized the continuing importance to mariners in receiving graphical products via radio transmissions and requested JCOMM to continue researching methods for transmitting graphical products to marine users. On the other hand, the WMO Executive Council, at its sixty-first session (Geneva, June 2009), encouraged WMO Members to investigate low-cost options for on-demand approaches that are compatible with Electronic Navigation Charts (ENC).

The Marine Information Objects (MIO) consist of supplementary information to be used with an ENC. Supplementary means additional, non-mandatory information not already covered by existing IMO, IHO, and IEC (International Electrotechnical Commission) standards or specifications. Examples of MIOs include ice coverage, tide/water level, current flow, and meteorological, oceanographic, and marine habitats. Depending on the navigation situation or task-at-hand, the provision and use of the MIOs (e.g., ice coverage, weather conditions, etc.) can be crucial in terms of improving both the safety and efficiency of maritime navigation, as well as ensuring the protection of the marine environment. In order to facilitate the development and implementation of MIOs, the IHO and IEC agreed to establish a Harmonization Group on Marine Information Objects (HGMIO) in May 2002, which developed specific standards.

The increase of ENC systems on SOLAS vessels as regulatory material and the emergence of the e-navigation concept within IMO (see agenda items 2.2 & 6.1) have reinforced the priority given to this requirement and the need to find appropriate resources to develop a suitable service.

Both the ETMSS and ETSI have been working on this issue. ETSI has already developed the Sea Ice Objects Catalogue in accordance with the S-57 and S-100 IHO chart data exchange standards.

For other Met-ocean parameters, the ETMSS (Chair and Vice-chair) and the WMO Secretariat have initiated the development of a catalogue on Met-ocean Object Classes and Attributes. JCOMM-III requested ETMSS to continue to develop this catalogue to define standards for ENC and e-Navigation, in collaboration with ETSI and guidance from IMO and IHO (SFSPA **Project #22** (with ETSI) – see agenda item 2).

Attachment: Progress Activity Report

CONTENTS

Progress/Activity Report	1
Annex I – Terms of Reference	8
Annex II – Proposed Met-Ocean Feature Object Classes and Attributes	9
Annex III – Met-Ocean Object Classes	14
Annex IV – Met-Ocean Attributes	48
Annex V – References	85
Annex VI – Acronyms and other Abbreviations	87

PROGRESS/ACTIVITY REPORT

1. Background

1.1 Mariners strongly benefit from displaying information on electronic charts. The Joint WMO-IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM) recognized at the first session (2001, Akureyri, Iceland) that meteorological analysis and forecast charts are regarded by the users as essential adjuncts to forecasts and warnings in text format and of vital importance to the safety of life at sea. In 2007 the Expert Team on Maritime Safety Services (ETMSS) noted at the second session in Angra dos Reis, Brazil, the usefulness of the information in graphical form. It received the highest positive response of any field reported (94% yes) in the 4-yearly Manual on Marine Meteorological Services (MMMS) survey conducted in 2004. ETMSS-II stated with reference to the 2001 amendments to the International Convention for the Safety of Life at Sea (SOLAS), Chapter V, that weather information in graphical form should be made available for shipping.

The WMO Executive Council (EC) LX in 2008

requested JCOMM to continue researching methods for transmitting graphical products to marine users, and requested the Secretary-General to promote resource mobilization to further develop these activities and partnerships through national and international support. (in paragraph 4.2.25)

In the following year EC-LXI

noted the successful development, in accordance with IHO standards, of product specification for sea ice information in Electronic Navigation Chart Systems (ENC). It encouraged Members to make maximum use of these essential tools and requested JCOMM, in consultation with IMO, to develop similar standards for other met-ocean variables. It requested the WMO Secretary-General to promote resource mobilization to develop these activities and partnerships through national and international support. (in paragraph 4.2.31)

- 1.2 There have been several approaches to push forward the development of product specifications for meteorological and oceanographic parameters consistent with the existing IHO standards by JCOMM, especially the ETMSS, which appointed a Rapporteur on Weather Information in graphical form in Electronic Chart Display and Information System (ECDIS). But, as concluded at ETMSS-II, the primary reason for the failure in achieving this project, in addition to its complexity and scope, is simply the lack of human resource.
- 1.3 The development of graphical products for mariners should be consistent with the International Maritime Organization (IMO) concept of e-navigation, discussed at the 54th session of the Sub-committee on Safety of Navigation (NAV) in 2008. It is defined that e-navigation is the harmonized collection, integration, exchange, presentation and analysis of marine information on board and ashore by electronic means to enhance berth to berth navigation and related services for safety and security at sea and protection of the marine environment. One of the core objectives to meet the user needs is to facilitate safe and secure navigation of vessels having regard to hydrographic, meteorological and navigational information and risks.
- 1.4 There are various possibilities to deliver and display the information. Alternatives to the dissemination via radiofacsimile broadcast are the use of satellite channels and delivering data via e-mail or FTP mail. Automatic Identification System (AIS) binary massaging may become a key feature of e-navigation. Also different graphical approaches exist. Some of them are forecaster-generated grids, vector charts or warning polygons. In this report the focus is directed to the development of met-ocean information in ECDIS.

- 1.5 ECDIS is a computerized navigation system which has advanced functions such as route planning and automatic alarms. It is also possible to include time variable navigational objects representing the dynamic variability of the elements surrounding the ships. These objects are known under the term Marine Information Objects or Marine Information Overlays (MIOs). These consist of supplementary information that are not ENC objects or specified navigational elements or parameters. Supplementary means additional, non-mandatory information not already covered by existing IMO, International Hydrographic Organization (IHO), and International Electrotechnical Commission (IEC) standards or specifications. The existing navigational information for ECDIS is based on the IHO Transfer Standard for Digital Hydrographic Data (S-57) and IHO Specifications for Chart Content and Display Aspects of ECDIS (S-52), where the Objects and the associated Attributes as well as the colours and symbols are defined. MIOs should conform to these standards.
- 1.6 The concept ECDIS is based on assuming that real world entities can be categorized into a finite number of types. These entity types are termed feature object classes. An instance of a feature object class, referred to as a feature object, can be more precisely described by assigning to it a number of attributes and then specifying values for those attributes. A particular real world entity is encoded by specifying the appropriate feature object class, attributes and attribute values.
- 1.7 Although the *IHO Hydrographic Geospatial Standard for Marine Data and Information* (S-100), developed to overcome limitations of S-57, will be active as of 2010, S-57 will remain for the foreseeable future and therefore define the standard for the development of MIOs. Nevertheless as S-100 provides the facility to transfer and display time-varying and gridded information it will be in future more than an alternative for the dissemination of met-ocean Maritime Safety Information (MSI).
- 1.8 The dissemination at sea is limited due to restrictions of the bandwidth of radio and satellite channels for transmission of MSI. The IMO Sub-committee on Radiocommunications and Search and Rescue (COMSAR) and the NAV Sub-committee figure out the requests for future systems which should be able to disseminate graphical products. In addition to the limited bandwidth of systems, the potential cost implication for MSI providers (including met-ocean Issuing Services) that would be involved in the dissemination at sea of such additional graphical/numerical information, will require to define highly compressed format(s) and perhaps to consider pull systems for non-essential data. The latter would imply that transmission costs, if any, had to be paid by users.

2 Terms of Reference for an Internship

- 2.1 As emphasized in 1.1 the work in developing standards for Met-ocean information in ENCs is strongly recommended. The Terms of Reference (ToR) for the internship are therefore concentrated on ECDIS see Annex I.
- 2.2 The purpose of the internship is as a first step to prepare an inventory of the existing IMO and IHO standards for ECDIS and associated documentation. The second step shall develop a catalogue on met-ocean feature object classes and attributes required for transmitting met-ocean graphical products to mariners, consistent with the standards mentioned above. A progress/activity report is included.
- 2.3 NOTE: The work on Sea Ice Objects and Attributes is already done and therefore not included in this ToR. Detailed information on this work is available in the *Ice Objects Catalogue Version 4.0*.

3. REVIEW OF EXISTING DOCUMENTATION WITHIN WMO RELEVANT TO THE WORK

3.1 WMO Publications

3.1.1 It follows a list, including very short descriptions of content, of the consulted publications sorted by subject.

3.1.1.1 Marine Meteorology

- WMO-No. 8 (2008) (Guide to Meteorological Instruments and Methods of Observation) –
 Guidance on the most effective practices for carrying out meteorological observations and
 measurements. Part II, Chapter 4 (Marine Observations) contains a list of elements, which
 should be observed on ships.
- WMO-No. 9, Volume D (2008) (Weather Reporting Information for Shipping) Includes marine meteorological and other related geophysical information necessary for safe and economic conduct of shipping operations, as well as for fishing and other marine activities.
- WMO-No. 182 (1992) (International Meteorological Vocabulary) Defines the terms used in meteorology.
- WMO-No. 306 (1995) (Manual on Codes) Inventory of Code Forms and Binary Codes made up of Symbolic Letters (or groups of letters) representing meteorological and other related geophysical parameters. The specifications and if necessary code figures in Code Tables are given.
- WMO-No. 471 (2001) (Guide to Marine Meteorological Services) Gives overview of the Marine Meteorological Services, lists terminology used for them and explains the different services.
- WMO-No. 485 (1992) (Manual on the Global Data-processing and Forecasting System) –
 Contains standard and recommended practices and procedures, explains the organization
 and functions of the Global Data-processing and Forecasting System and the dataprocessing and forecasting aspects.
- WMO-No. 488 (2007) (Guide to the Global Observing System) Deals with the organization and implementation of the Global Observing System.
- WMO-No. 544 (2003) (Manual on the Global Observing System) Specifies what is to be observed where and when in order to meet the relevant observational requirements.
- WMO-No. 558 (1990) (Manual on Marine Meteorological Services) Contains standard and recommended practices to be applied by members providing Marine Meteorological Services.
- WMO-No. 702 (1998) (Guide to Wave Analysis) Guidance material on wave forecasting methodology suitable for use by National Meteorological Services.
- WMO/TD-No. 850 (1998) (Handbook of Offshore Forecasting Services) Assistance to
 offshore forecast users including some terminology and a couple of examples of forecasts
 in different manners.

3.1.1.2 Aeronautic

 WMO-No. 49, Volume II (2007) (Technical Regulations Basis Documents No. 2 – Meteorological Service for International Air Navigation) – Gives the core standards and recommended practices used for meteorological services for international air navigation, e.g. SIGMET and AIRMET information. 3.1.2 Most of the publications turned out to be useful for the purpose of developing a list of metocean objects. These were WMO-No. 182 for definitions, WMO-No. 306 as a guideline for the coding, WMO-No. 8 as a reference for the observed elements on ships, WMO-No. 471 listing parameters required by Rescue Coordination Centres (RCCs), WMO-No. 558 and WMO-No. 485 which include already used symbology, WMO-No.49 giving the meteorological parameters disseminated in aeronautics and WMO-No.850 for some terminology.

3.2 WMO Working Documents

- 3.2.1 Expert Team on Maritime Safety Services (ETMSS)
- Lisbon, Portugal (2002, First Session), Weather Information in Graphical Form for GMDSS

 Terms of Reference for the Rapporteur Contains a proposal for the appointment of a Rapporteur on weather information in graphical form and the appropriate Terms of Reference.
- Lisbon, Portugal (2002, First Session), Weather Information in Graphical Form for GMDSS

 Report from the Services Programme Area Coordinator on Progress of Project with Inmarsat Contains a progress report on the project by Inmarsat Ltd., in conjunction with the Australian Bureau of Meteorology, to develop a facility for transmitting SafetyNET graphical products via Inmarsat C.
- Angra dos Reis, Brazil (2007, Second Session), Weather Information in Graphical Form for GMDSS – Contains proposal for the JCOMM project related to the provision of Maritime Safety Information (MSI) in graphical format for SOLAS and non-SOLAS vessels via the Inmarsat SafetyNET
- Geneva, Switzerland (2009, Task Team on Maritime Safety Information, submitted by Dr Vasily Smolyanitsky), Met-ocean Information in Graphical/Numerical Form and E-Navigation Charts – Provides information on the Expert Team on Sea Ice (ETSI) ENC Ice Objects Task Group (TG-ENCIO) activities since 2004 regarding development of documentation for sea ice products presentation within ENC.
- Geneva, Switzerland (2009, Task Team on Maritime Safety Information, submitted by International Hydrographic Bureau (IHB)), Met-ocean Information in Graphical/Numerical Form and E-Navigation Charts – Provides information on the changes to the IHO Committee Structure and the joint IHO IEC Harmonization Group on Marine Information Overlays (HGMIO).
- Geneva, Switzerland (2009, Task Team on Maritime Safety Information), Final Report, JCOMM Meeting Report No. 64.
- 3.2.2 Harmonization Group on Marine Information Objects/Overlays (HGMIO)
- HGMIO2/6e, Monaco (2002), Oceanographic Object Attribution Technical White Paper –
 Contains an overview of the progress done so far and a proposed list of oceanographic
 object classes and attributes.
- HGMIO2/10, Monaco (2002), Proposed Object Classes and Attributes for Weather Contains a catalogue of the object classes and attributes.
- HGMIO4-4B, Durham, New Hampshire, USA (2007), Marine Information Objects (MIO) Gives overview of the state of the art of ECDIS and a MIO development procedure.

- HGMIO4-7B, Durham, New Hampshire, USA (2007), General Content Specification for Marine Information Overlays (MIOs) – Contains the General Content Specification for MIOs.
- HGMIO (Lee Alexander, Michel Huet; 2007), Relationship of Marine Information Overlays (MIOs) to Current/Future IHO Standards, Version 4 – Deals mainly with the current S-57 standard and the future S-100 standard.
- 3.2.3 Expert Team on Sea Ice (ETSI)
- Geneva, Switzerland (2007, Third Session), Ice Objects Catalogue Catalogue of the new defined Object Classes and Attributes for sea ice information in ECDIS.

4. REVIEW OF RELEVANT PUBLICATIONS BY ORGANIZATIONS/AGENCIES EXCEPT WMO

- 4.1 It follows a list of the ECDIS-related publications by organisations/agencies except WMO sorted by organisation/agency.
- 4.1.1 International Eletrotechnical Commission (IEC)
- IEC 61174 (2008) (Maritime navigation and radiocommunication equipment and systems Electronic chart display and information system (ECDIS) – Operational and performance requirements, methods of testing and required test results)
- IEC 62288 (2008) (Maritime navigation and radiocommunication equipment and systems –
 Presentation of navigation-related information on shipborne navigational displays –
 General requirements, methods of testing and required test results)
- 4.1.2 International Hydrographic Organization (IHO)
- S-32 Appendix 1 (2007) (Hydrographic Dictionary Glossary of ECDIS Related terms) Provides a list of all ECDIS-related terms in use, with specific definitions.
- S-52 (2008) (Specifications for Chart Content and Display Aspects of ECDIS) Provides specifications and guidance regarding the issuing of ENCs, their display in an ECDIS and their updating.
- S-57 (2000) (IHO Transfer Standard for Digital Hydrographic Data) Describes the data standard to be used for exchange of digital hydrographic data, and for the distribution of digital hydrographic products to manufacturers, mariners, and other data users.
- 4.1.3 International Maritime Organization (IMO)
- Resolution A.817(19) (1995) (Performance Standards for Electronic Chart Display and Information Systems (ECDIS)) – Determines performance standards for ECDIS.
- Resolution MSC.64(67) (1996) (Adoption of New and Amended Performance Standards) Amendment to A.817(19)
- Resolution MSC.86(70) (1998) (Adoption of New and Amended Performance Standards for Navigational Equipment) - Amendment to A.817(19)

- Resolution MSC.191(79) (2004) (Performance Standards for the Presentation of Navigation-related Information on Shipborne Navigational Displays) – Additional standard, determines e.g. radar presentation
- Resolution MSC.232(82) (2006) (Adoption of the Revised Performance Standards for Electronic Chart Display and Information Systems (ECDIS)) - Amendment to A.817(19)
- NAV 54/25 Annex 12 (2007) (Draft Strategy for the Development and Implementation of E-navigation) Explains the IMO concept of E-navigation, e.g. lists user needs and basic requirements, gives reasons and anticipated benefits for e-navigation.
- NAV 55/INF.9 (2009) (Development of an E-navigation Strategy Implementation Plan Results of a Worldwide E-navigation User Needs Survey) – Describes the detailed e-navigation user needs including environmental information.
- NAV 55/8/2 (2009) (ITU Matters, Including Radiocommunication; ITU-R Study Group Matters – World Radiocommunication Conference 2011 – Future Spectrum Requirement with Respect to E-navigation) – Gives overview of current limitations and suggestions of future requirements.
- 4.1.4 Intergovernmental Oceanographic Commission (IOC)
- IOC Manuals and Guides No. 4 (1975) (Guide to Oceanographic and Marine Meteorological Instruments and Observing Practices) – Guides through the different oceanographic and marine meteorological parameters by explaining them and the measurement methods.
- IOC Technical Series No. 37 (1991) (Tsunami Glossary) Lists as many as possible of the terms found in the tsunami literature and provide their specific definitions.
- 4.2 IHO S-57 has been used because of the catalogues of the already existing Feature Object Classes and Attributes. The IOC documentations have been helpful for the symbology (Manuals and Guides No. 4) and terminology (Technical Series No. 37).

5. DEVELOPMENT OF A CATALOGUE ON MET-OCEAN OBJECTS AND ATTRIBUTES

- 5.1 The first task has been to get an overview of ECDIS-related documentations within WMO see item 3 and by other organisations/agencies see item 4. After consultation of these publications a better view on ECDIS, the related standards and the already existing Objects and Attributes has been present. As a basis the *Proposed Object Classes and Attributes for Weather*, the development of the *Ice Objects Catalogue Version 4.0* and some former work done on oceanographic objects and attributes has been helpful. To clarify the needs of the mariners on met-ocean information important for the safety at sea the lecture of the documentation has been also very useful.
- 5.2 Comparing and combining all the information has lead to a first list of proposed Met-ocean Feature Object Classes and associated Attributes attached in Annex II. A duplication of already existing Objects and Attributes has been avoided. Furthermore the names of the Objects and Attributes are as far as possible consistent with the terminology defined in the *International Meteorological Vocabulary*. The proposed Objects and Attributes are divided into categories, meaning sorted by the necessity for safety and security of navigation. The "additional parameters" are listed for completeness and can be considered for efficiency of navigation.

5.3 In a next step catalogues of the proposed met-ocean Object Classes and Attributes, respectively, have been developed (Annexes III and IV). They are consistent with the existing *IHO Object Catalogue* (S-57, Appendix A) and the *Ice Objects Catalogue* – *Version 4.0*. For every

Object Class references of WMO publications which contain the meteorological parameter the Object deals with are given. Additionally the Objects are defined using official WMO terminology where available. The Object Classes have also each an acronym as well as a list of the subset Attributes which are used with the particular Object, containing already defined and new proposed Attributes.

5.4 These new Attributes refer also to WMO publications dealing with marine meteorological services or the global data-processing and forecasting system. As for the Objects, the terminology used for the names of the Attributes themselves, and/or the expected input has been defined where possible, but there also occurred some gaps of defined terminology in WMO publications.

6. DISCUSSION AND CONCLUSION

- 6.1 There remains a lot of work to do until the new met-ocean Object Classes and Attributes can be implemented into the IHO standard. The now provided Catalogues have to be discussed by members of expert teams of WMO and IHO dealing with safety at sea, navigational aspects or marine meteorology. Further the symbology has to be defined and references made. As a last step companies have to develop systems which allow to display the new met-ocean information on the ECDIS.
- 6.2 A special task has to be done by WMO. Several problems occurred because of missing definitions in the WMO publications. Therefore the need of a Marine Glossary within WMO turned out.
- 6.3 The work done in this internship should contribute to the development of the possibility to display met-ocean information in the ECDIS environment. Aim of this issue is to improve the safety of navigation at sea.
- 6.4 I very much like to acknowledge Alice Soares for supervising my internship. She took the time to give me advise and discuss subjects with me, even when she was very busy. Thanks also to Henri Savina who contributed to my work by giving several helpful comments on the issue.

TERMS OF REFERENCE

Internship at the Marine Meteorology and Ocean Affairs Division 2 June to 31 August 2009

- 1. Prepare an inventory of the existing IMO and IHO standards for Electronic Chart Display and Information System (ECDIS) and associated documentation.
- 2. Develop a catalogue on Met-ocean Objects and Attributes required for transmitting Met-ocean graphical products to mariners, consistent with IMO/IHO Performance Standards for ECDIS.
- 3. Prepare a progress/activity report.

Annex II

PROPOSED MET-OCEAN FEATURE OBJECT CLASSES AND ATTRIBUTES

Category*	Proposed Parameters WMO July 2009	Proposed Objects (Attributes) WMO July 2009	WMO-No. 471, 1992 WMO-No. 558, 1990 Guide to / Manual on Marine Meteorological Services	HGMIO2/10 Nov 1999/Aug 2003 Jana Schulze Objects (Attributes) HGMIO2-6e [II] Jun 2002 IHB / Maxim an Norden	WMO-No. 49, 2008 Technical Regulations Volume II (SIG/AIRMET)	Status of the JCOMM Observation Requirements 2007
	Wind	Surface Wind Force [1] (Category of Surface Wind Force) Surface Wind Direction [1] (Value of Surface Wind Direction + Change in Surface Wind Direction) Gust (Category of Surface Wind Force)	Surface Winds	Wind (Wind Velocity + Weather Forecast + Wind Gust + Gust Velocity)	Surface Wind Speed Strong Surface Winds and Gusts Squall	Surface Winds (A,B,C,D,M,S) Surface and Upper Air Winds (D) Sea Surface Winds: Direction (G) Wind Speed: Profiles (G) Sea Surface Winds: Speed, Coastal; Speed (G)
1 - HIGH	Sea State	Wave [1] (Significant Wave Height + Length + Period + Direction) Swell [1] (Significant Wave Height + Length + Period + Direction) Wind Sea [1] (Significant Wave Height + Length + Period + Direction) Storm Surge (Value of Storm Surge) Tsunami (Significant Wave Height + Length + Period + Direction)	Sea and Swell Surf and Breakers Storm Surge	Sea Swell (Weather Forecast + Wave Height + Wave Length) Wind Wave (Weather Forecast + Wave Height + Wave Length) Breaking Waves [II] Swells [II] Storm Surge [II]	Tsunami	Sea State (A,B,C,D,M,S) Ocean Waves: Direction; Period; Significant Wave Height; 1D Freq Spectral Data; 2D Freq, Direction Spectral Data (G) Significant Wave Height (W) Dominant Wave Direction (W) Wave Period (W) 1D Frequency Spectral Wave Energy Density (W) 2D Frequency Direction Spectral Wave Energy Density (W)
	Tropical Cyclone	Tropical Cyclone (Category of Tropical Cyclone)		Tropical Cyclones (Category of Tropical Cyclones + Geographic Position of Tropical Cyclone + Weather Forecast + Speed of a Tropical Cyclone)	Tropical Cyclone	

	Visibility	Surface Visibility [1] (Category of Surface Visibility)	Surface Visibility		Surface Visibility	Visibility (A,D,S)
Category*	Proposed Parameters WMO July 2009	Proposed Objects (Attributes) WMO July 2009	WMO-No. 471, 1992 WMO-No. 558, 1990 Guide to / Manual on Marine Meteorological Services	HGMIO2/10 Nov 1999/Aug 2003 Jana Schulze Objects (Attributes) HGMIO2-6e [II] Jun 2002 IHB / Maxim an Norden	WMO-No. 49, 2008 Technical Regulations Volume II (SIG/AIRMET)	Status of the JCOMM Observation Requirements 2007
1 – HIGH	Significant Weather	Significant Weather (Category of Significant Weather)	Precipitation and cloud cover; including height of cloud base	Area of Precipitation (Weather Forecast) Significant Weather (Category of Significant Weather	Thunderstorms Hail Snow Freezing Precipitation	Lightning (A,S) Precipitation (B,M,S)
	Fronts	Front (Category of Front)		Fronts (Category of Front + Weather Forecast)		
	Atmospheric Pressure	Centre of Low Pressure (Value of Atmospheric Pressure + Atmospheric Pressure Accuracy) Centre of High Pressure (Value of Atmospheric Pressure + Atmospheric Pressure Accuracy) Atmospheric Pressure Contour (Value of Atmospheric Pressure Contour + Atmospheric Pressure Accuracy)	Atmospheric Pressure	High Pressure (Category of + Value of High Pressure + Weather Forecast) Low Pressure (Category of + Value of Low Pressure + Weather Forecast) Pressure Area (Pressure Value 1 + Value 2 + Weather Forecast) Isopleths (Category of Isopleths + Pressure Value of an Isopleth + Weather Forecast)		Atmospheric Pressure: Surface (G)
	Icing	Icing (Icing Intensity)	Ice Accretion	,	Icing	Ice Accretion (D,M,S)
	Expected Progress	Expected Movement (Direction of + Speed of Expected Movement) Expected Change in Intensity (Category of Expected Change in Intensity)		Motion [of an Weather Object] (Speed [of a Weather Object])	Movement or Expected Movement Expected Changes in Intensity	

	Surface Current	Sea-surface Current (Direction of + Speed of Surface Current)	Surface Currents	Major Currents [II] Coastal Currents [II] Wind Driven Currents [II] Rip Currents [II] Upwelling [II] Fronts and Eddies [II] Flow Rates [II]		Surface and Near-surface Currents (A) 3D Ocean Currents (B) Ocean Currents: Direction, Profiles; Direction, Surface; Direction, Surface, Offshore; Speed, Profiles; Speed, Surface; Speed Surface, Offshore (G) Surface and Sub-surface Currents (M,S) Surface / Tidal Currents (C)
Category*	Proposed Parameters WMO July 2009	Proposed Objects (Attributes) WMO July 2009	WMO-No. 471, 1992 WMO-No. 558, 1990 Guide to / Manual on Marine Meteorological Services	HGMIO2/10 Nov 1999/Aug 2003 Jana Schulze Objects (Attributes) HGMIO2-6e [II] Jun 2002 IHB / Maxim an Norden	WMO-No. 49, 2008 Technical Regulations Volume II (SIG/AIRMET)	Status of the JCOMM Observation Requirements 2007
MOI	Air Temperature	Maximum Air Temperature (Value of Temperature + Temperature Accuracy) Minimum Air Temperature (Value of Temperature + Temperature Accuracy) Air Temperature Contour (Value of Air Temperature Contour + Temperature Accuracy)	Air Temperature	Isopleths (Category of Isopleths + Air Temperature Value of an Isopleth + Weather Forecast)		Surface Air Temperature (D,M,S) Air Temperature: Profiles (G) Air Temperature (B,M,S)
2 – MEDIUM	Sea-surface Temperature	Maximum Sea-surface Temperature (Value of Temperature + Temperature Accuracy) Minimum Sea-surface Temperature (Value of Temperature + Temperature Accuracy) Sea-surface Temperature Contour (Value of Temperature Contour + Temperature Accuracy)	Sea-surface Temperature	Temperature [II]		Sea Surface Temperature (D,M,S) Sea Surface Temps (G) Sea Temperature (B)

3-LOW	Pressure Tendency Clouds	Maximum Pressure Increase / Minimum Pressure Decrease (Value of Pressure Tendency + Pressure Accuracy) Maximum Pressure Decrease / Minimum Pressure Increase (Value of Pressure Tendency + Pressure Accuracy) Pressure Tendency Contour (Value of Pressure Tendency Contour + Pressure Accuracy) Cloud [1] (Height of Cloud Base + Total Cloud Cover)	Precipitation and cloud cover; including		Cloud	Cloud Cover (D,S) Cloud Top Temperature (G)
Category*	Proposed Parameters WMO July 2009	Proposed Objects (Attributes) WMO July 2009	height of cloud base WMO-No. 471, 1992 WMO-No. 558, 1990 Guide to / Manual on Marine Meteorological Services	HGMIO2/10 Nov 1999/Aug 2003 Jana Schulze Objects (Attributes) HGMIO2-6e [II] Jun 2002 IHB / Maxim an Norden	WMO-No. 49, 2008 Technical Regulations Volume II (SIG/AIRMET)	Status of the JCOMM Observation Requirements 2007
3 - LOW	Dew-point Temperature	Maximum Dew-point Temperature (Value of Temperature + Temperature Accuracy) Minimum Dew-point Temperature (Value of Temperature + Temperature Accuracy) Dew-point Temperature Contour (Value of Dew-point Temperature Contour + Temperature Accuracy)	Humidity			Water Vapor: Profiles (G)
			Water Discoloration	Salinity [II]	Turbulence	Bathymetrie / Shoreline (A,B,C,D,M,S)
				Pressure [II]	Mountain Wave	Bathymetrie (G)
				Solar Radiation [II]	Duststorm	Ocean Color (G)
				Sound Velocity [II]	Sandstorm	Ocean Temperature: Profiles; Profiles, Coastal (G)
			1	Acoustic Propagation [II]	Volcanic Ash	Ozone: Profiles (G)

	Light Reflection [II]	Radioactive Cloud	Ozone: Total Column (G)
	Ocean Colour [II]	Mountain Obscuration	Incoming Longwave Radiation: Surface (G)
	Bioluminiscence [II]	Hoar Frost or Rime	Radiances: Microwave (G)
	Flooding [II]	Rising Sand or Dust	Radiances: Raw Data, Instrument Specific (G)
	Roughness [II]	Frost	Radiances: Visible (G)
	Impact Burial [II]		Salinity: Profiles, Subsurface; Surface (G)
	Bottom Sediment [II]		Sea Surface Height (G)
	Marine Vegetation [II]		Ocean Temperature and Density (M,S)
	Erosion [II]		Ocean Density (B)
	Dredging [II]		
	Damming [II]		
	Pollution [II]		
	Trafficability [II]		
	Estuaries [II]		

^{*}The proposed Objects and Attributes are divided into categories, meaning sorted by the necessity for safety and security of navigation. The "additional parameters" are listed for completeness and can be considered for efficiency of navigation.

- [1] In accordance to observed elements listed in WMO-No. 8, Part II
- (A) Met-ocean Data Requirements: Vessel Safety and Support
- (B) Met-ocean Data Requirements: Pollution at Sea
- (C) Met-ocean Data Requirements: Support for MPEROAs
- (D) Met-ocean Data Requirements: SAR Operations
- (G) General Observation Requirements for Met-ocean Forecast Systems
- (M) Marine Accident Emergency Response

NOTE: The work on Sea Ice Objects and Attributes is already done and therefore not included. Detailed information on this work is available in the *Ice Objects Catalogue – Version 4.0*.

Annex III

MET-OCEAN OBJECT CLASSES

Met-Ocean Object Class	Acronyms
Surface Wind Speed Surface Wind Direction Gust Wave Swell Wind Sea Storm Surge Tsunami Tropical Cyclone Surface Visibility Significant Weather Front Centre of Depression Centre of Anticyclone Isobar Icing Expected Movement Expected Change in Intensity Sea-surface Current Minimum Air Temperature Maximum Air Temperature Isotherm Minimum Sea-surface Temperature Sea-s	ACTONYMS SUWISP SUWIDI GUSGUS WAVWAV SWELLS WINSEA STOSUR TSUNAM TROCYC SURVIS SIGWET FRONTS CENDEP CENANT ISOBAR ICINGS EXPMOV EXPINT SESUCU MINTEM MAXTEM ISOTHE MINSST MAXSST SSTCON PRETEN MAXPDE MAXPIN PRTCON CLOUDS MINDPT
Maximum Dew-point Temperature Dew-point Temperature Contour	MAXDPT DPTCON

Met-Ocean Object Class: Surface Wind Speed

Acronym: SUWISP

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; **BEAFOR**; **VAWISP**;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: Wind blowing near the Earth's surface. It is measured, by convention, at a

height of 10 m above ground in an area where the distance between the anemometer and any obstruction is at least 10 times the height of the

obstruction. (WMO-No. 182, S3850 → surface wind)

Number on a progressive scale (Beaufort scale) corresponding to the

effects produced by winds within a particular range of speeds. (WMO-No.

182, W1040 (1) \rightarrow wind force)

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

WMO/TD-No. 850

Remarks: Use either BEAFOR **or** VAWISP.

Met-Ocean Object Class: Surface Wind Direction

Acronym: SUWIDI

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; COMDIR; CHAWDI;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: Wind blowing near the Earth's surface. It is measured, by convention, at a

height of 10 m above ground in an area where the distance between the anemometer and any obstruction is at least 10 times the height of the

obstruction. (WMO-No. 182, S3850 → surface wind)

Direction from which the wind blows. (WMO-No.182, W0990 → wind

direction)

References: WMO-No 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins and 2.2.3

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

WMO/TD-No. 850

Remarks:

MET-Ocean Object Class: Gust				
Acronym:	GUSGUS			
Code:				
subset 'Attribute_A':	NOBJNM; OBJNAM; <i>CATWFO</i> ; <i>COMDIR</i>			
subset 'Attribute_B':	INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;			
subset 'Attribute_C':	RECDAT; RECIND; SORDAT; SORIND;			
Geometric Primitive:				
Definition:	Sudden, brief increase of the wind speed over its mean value. (WMO-No. 182, G0920)			
References:	WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and Sea Bulletins			
	WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather and Sea Bulletins			
Remarks:				

Met-Ocean Object Class: Wave

Acronym: WAVWAV

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; SIWAHE; CATSEH; WAVLEN; SIWAPE; SIWADI;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: Very generally, any pattern with some roughly identifiable periodicity in

time and/or space. (IOC-No. 37, p.129 (1))

More specifically, a disturbance propagated by virtue of periodic motions (oscillations) of the particles of the medium. At any point in the medium, the displacement is a function of location within the medium. (IOC-No. 37,

p.129(2))

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Swell

Acronym: SWELLS

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; CATSWH; SIWAHE; WAVLEN; SIWAPE; SIWADI;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: Any system of water waves which has left its generating area. (WMO-No.

182, S3900)

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Wind Sea

Acronym: WINSEA

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; CATSEH; SIWAHE; SIWALE; SIWAPE; SIWADI;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: Wave raised by the wind blowing in the immediate neighbourhood of an

observation site at the time of observation. (WMO-No. 182, W1130)

References:

Remarks:

Met-Ocean Object Class: Storm Surge

Acronym: STOSUR

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; T_MTOD; T_HWLW; *HEISUR*;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: The difference between the actual water level under influence of a

meteorological disturbance (storm tide) and the level which would have been attained in absence of the meteorological disturbance (i.e.

astronomical tide). (WMO-No. 182, S2960)

References: WMO-No. 471, 2.3, Meteorological Services in Support of Maritime

Search and Rescue

Remarks:

Met-Ocean Ob	ject Class:	Tsunami
--------------	-------------	---------

Acronym: TSUNAM

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; SIWAHE; WAVLEN; SIWAPE; SIWADI;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: A series of travelling waves of extremely long length and period,

generated by disturbances associated with earthquakes occurring below or near the ocean floor. (Also called seismic sea wave and, popularly, tidal wave.) An ocean wave produced by a submarine earthquake, landslide or

volcanic eruption. (IOC-No. 37, p.120)

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Tropical Cyclone

Acronym: TROCYC

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; **CATCYC**;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Generic term for a non-frontal synoptic scale cyclone originating over

tropical or sub-tropical waters with organized convection and definite

cyclonic surface wind circulation. (WMO-No. 182, T1510)

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Surface Visibility

Acronym: SURVIS

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; CATVIS;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: Greatest Distance at which a black object of suitable dimensions can be

seen and recognized against the horizon sky during daylight or could be seen and recognized during the night if the general illumination were

raised to the normal daylight level. (WMO-No. 182, V0390)

References: WMO-No. 471, 2.3, Meteorological Services in Support of Maritime

Search and Rescue

Remarks:

Met-Ocean Object Class: Significant Weather

Acronym: SIGWET

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; CATSWE;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Area

Definition: Term in marine meteorology concerning the occurrence or expected

occurrence of specified en-route weather phenomena which may effect the safety of ship in navigation (WMO-No. 182, S1080, changed from

aeronautical to marine purposes)

References: WMO-No. 306, Code Table 4683

Remarks:

Met-Ocean Object Class: Front

Acronym: FRONTS

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; CATFRO;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Line

Definition: The interface or transition zone between air masses of different densities

(temperature, humidity). (WMO-No. 182, F1290 (1))

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Centre of Depression

Acronym: CENDEP

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; ATPACC; VALATP

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Region of the atmosphere in which the pressures are lower than those of

the surrounding region at the same level. (WMO-No. 182, D0230

Point of the lowest pressure in the Low Pressure Area.

References: WMO-No. 558, Appendix I.4

Remarks:

Met-Ocean Object Class: Centre of Anticyclone

Acronym: CEHIPR

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; ATPACC; VALATP

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Region of the atmosphere where the pressures are high relative to those

in the surrounding region at the same level. (WMO-No. 182, A2090)

Point of the highest Pressure in the Area of High Pressure.

References: WMO-No. 558, Appendix I.4

Remarks:

Met-Ocean Object Class: Isobar

Acronym: ISOBAR

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; ATPACC; VALPCO;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Line

Definition: Line joining points of equal pressure on a surface (level surface, vertical

cross section, etc.). (WMO-No. 182, I1200)

References: WMO-No. 558, Appendix I.4

Remarks:

Met-Ocean Object Class: Icing

Acronym: ICINGS

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; *ICIINT*;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: Any deposit or coating of ice on an object caused by the impact of liquid

hydrometers, usually supercooled. (WMO-No. 182, I0200)

References: WMO-No. 49

WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Expected Movement

Acronym: **EXPMOV**

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; **DIEXMO**; **SPEXMO**; **SUNITS**;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition:

References: WMO-No. 49, Table A6-1. Template for SIGMET and AIRMET messages

and special air-reports (uplink)

Remarks:

Met-Ocean Object Class: Expected Change in Intensity

Acronym: **EXPINT**

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; CATINT;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition:

References: WMO-No. 49, Table A6-1. Template for SIGMET and AIRMET messages

and special air-reports (uplink)

Remarks:

Met-Ocean Object Class: Sea-surface Current

Acronym: SESUCU

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; **DISUCU**; **SPSUCU**; **VUNITS**;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: A current that does not extend more than a few (2-3) metres below the

surface. (IHO Hydrographic Dictionary (web*), HR-1090 → surface

current)

*http://www.iho.shom.fr/Dhydro/Html/site_edition/consultation.html, 08/04/2009.

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Minimum Air Temperature

Acronym: MINTEM

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; TMPACC; VALTMP;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: The temperature indicated by a thermometer exposed to the air in a place

sheltered from direct solar radiation. (WMO-No. 182, A1390)

The lowest value of air temperature in the treated area.

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Maximum Air Temperature

Acronym: MAXTEM

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; TMPACC; VALTMP;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: The temperature indicated by a thermometer exposed to the air in a place

sheltered from direct solar radiation. (WMO-No. 182, A1390)

The highest value of air temperature in the treated area.

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Isotherm

Acronym: ISOTHE

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; TMPACC; VALTCO;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Line

Definition: Line joining points of equal air temperature. (WMO-No. 182, I1490

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Minimum Sea-surface Temperature

Acronym: MINSST

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; TMPACC; VALTMP;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Temperature of the surface layer of a body of water. (WMO-No. 182,

S3830)

The lowest value of sea-surface temperature in the treated area.

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Maximum Sea-surface Temperature

Acronym: MAXSST

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; TMPACC; VALTMP;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Temperature of the surface layer of a body of water. (WMO-No. 182,

S3830)

The highest value of sea-surface temperature in the treated area.

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Sea-surface Temperature Contour

Acronym: SSTCON

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; TMPACC; VALTCO;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Line

Definition: Line joining points of equal sea-surface temperature.

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Pressure Tendency

Acronym: PRETEN

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; ATPACC; AMPRCH; CHPRCH;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Character and amount of a station pressure change over three hours

(over 24 hours in tropical regions). (WMO-No. 182, P1690)

References:

Remarks:

Met-Ocean Object Class: Maximum Pressure Decrease/Minimum Pressure

Increase

Acronym: MAXPDE

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; ATPACC; AMPRCH;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Point of the maximum pressure decrease or minimum pressure increase

in absence of pressure decrease in the treated area.

References:

Remarks:

Met-Ocean Object Class: Maximum Pressure Increase/Minimum Pressure

Decrease

Acronym: MAXPIN

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; ATPACC; AMPRCH;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Point of the maximum pressure increase or minimum pressure decrease

in absence of pressure increase in the treated area.

References:

Remarks:

ETMSS-III/Doc. 6.2(1), p. 44

Met-Ocean Object Class: Isallobars

Acronym: ISALLO

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; ATPACC; VALISA;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Line

Definition: Line joining points of equal pressure change during a specific time

interval. (WMO-No. 182, I1050)

References:

Remarks:

Met-Ocean Object Class: Cloud

Acronym: CLOUDS

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; HCLOBA; TCLOCO;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive:

Definition: A hydrometeor consisting of minute particles of liquid water or ice, or of

both, suspended in the free air and usually not touching the ground. It may also include larger particles of liquid water or ice and non-aqueous liquid or solid particles such as those present in fumes, smoke and dust. (WMO-

No. 182, C1450)

References: WMO-No. 471., 2.3, Meteorological Services in Support of Maritime

Search and Rescue

Remarks:

Met-Ocean Object Class: Minimum Dew-point Temperature

Acronym: MINDPT

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; TMPACC; VALTMP;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Temperature to which a volume of air must be cooled at constant pressure

and constant moisture in order to reach saturation; any further cooling

causes condensation. (WMO-No. 182, D0420)

The lowest value of dew-point temperature in the treated area.

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Maximum Dew-point Temperature

Acronym: MAXDPT

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; *TMPACC*; *VALTMP*;

subset 'Attribute B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Point

Definition: Temperature to which a volume of air must be cooled at constant pressure

and constant moisture in order to reach saturation; any further cooling

causes condensation. (WMO-No. 182, D0420)

The highest value of dew-point temperature in the treated area.

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Met-Ocean Object Class: Dew-point Temperature Contour

Acronym: **DPTCON**

Code:

subset 'Attribute_A': NOBJNM; OBJNAM; TMPACC; VALTCO;

subset 'Attribute_B': INFORM; NINFOM; SCAMIN; SCAMAX; TXTDSC; NTXTDS; PICREP;

subset 'Attribute_C': RECDAT; RECIND; SORDAT; SORIND;

Geometric Primitive: Line

Definition: Line joining points of equal dew-point. (WMO-No. 182, I1320)

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

Remarks:

Annex IV

MET-OCEAN ATTRIBUTES

Met-Ocean Attribute	Acronym
Beaufort Force Value of Surface Wind Speed Compass Points of Surface Wind Direction Change in Surface Wind Direction Significant Wave Height Category of Significant Sea Wave Height Wave Length Significant Wave Period Significant Wave Direction Height of Storm Surge Category of Tropical Cyclone Category of Significant Weather Category of Significant Weather Category of Front Atmospheric Pressure Accuracy Value of Atmospheric Pressure Value of Atmospheric Pressure Contour Icing Intensity Direction of Expected Movement Speed of Expected Movement Category of Surface Current Speed of Surface Current Temperature Accuracy Value of Temperature Value of Temperature Value of Temperature Contour Amount of Pressure Change Characteristic of Pressure Change Value of Isallobar Height of Cloud Base Total Cloud Cover	BEAFOR VAWISP COMDIR CHAWDI SIWAHE CATSEH CATSWH WAVLEN SIWAPE SIWADI HEISUR CATCYC CATVIS CATSWE CATFRO ATPACC VALATP VALPCO ICIINT DIEXMO SPEXMO CATINT DISUCU SPSUCU TMPACC VALTMP VALTCO AMPRCH CHPRCH VALISA HCLOBA TCLOCO
Velocity Units	VUNITS

Met-Ocean Attribute: Beaufort Force

Acronym: **BEAFOR**

Code:

Attribute Type: E

Expected Input: ID Meaning

01: calm 02: light air 03: light breeze 04: gentle breeze 05: moderate breeze 06: fresh breeze 07: strong breeze 08: near gale 09: gale 10: strong gale 11: storm 12: violent storm

13: hurricane

Definition: calm: Absence of air motion or wind with a speed of less

than 1 knot (Beaufort scale wind force 0). (WMO-No.

182, C0030)

light air: Wind with a speed between 1 and 3 knots (Beaufort

scale wind force 1). (WMO-No. 182, L0500)

light breeze: Wind with a speed between 4 and 6 knots (Beaufort

scale wind force 2). (WMO-No. 182, L0510)

gentle breeze: Wind with a speed between 7 and 10 knots (Beaufort

scale wind force 3). (WMO-No. 182, G0200)

moderate breeze: Wind with a speed between 11 and 16 knots

(Beaufort scale wind force 4). (WMO-No. 182,

M1680)

fresh breeze: Wind with a speed between 17 and 21 knots

(Beaufort scale wind force 5). (WMO-No. 182,

F1200)

strong breeze: Wind with a speed between 22 and 27 knots

(Beaufort scale wind force 6). (WMO-No. 182,

S3120)

near gale: Wind with a speed between 28 and 33 knots

(Beaufort scale wind force 7). (WMO-No. 182,

N0150)

ETMSS-III/Doc. 6.2(1), p. 51

gale: Wind with a speed between 34 and 40 knots

(Beaufort scale wind force 8). (WMO-No. 182,

G0010)

strong gale: Wind with a speed between 41 and 47 knots

(Beaufort scale wind force 9). (WMO-No. 182,

S3130)

storm: Wind with a speed between 48 and 55 knots

(Beaufort scale wind force 10). (WMO-No. 182,

S2950 (2))

violent storm: Wind with a speed between 56 and 63 knots

(Beaufort scale wind force 11). (WMO-No. 182,

V0340)

hurricane: Name given to a warm core tropical cyclone with

maximum surface wind of 118 km h⁻¹ (64 knots, 74 mph) or greater (hurricane force wind) in the North Atlantic, the Caribbean and the Gulf of Mexico, and in the Eastern North Pacific Ocean. (WMO-No. 182,

H0860 (1))

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

WMO/TD-No. 850

Met-Ocean Attribute: Value of Surface Wind Speed

Acronym: VAWISP

Code:

Attribute Type: F

Definition: ---

Minimum Value: 0

Indication: Unit: defined in the VUNITS attribute of the M_UNIT meta object class,

e.g. meter per second (m/s)

Resolution: 1 m/s or 1 knot

Format: xx

Example: 13 for a surface wind speed of 2.5 m/s to 3.4 m/s.

References: WMO-No. 471, §2.2.3

WMO-No. 558, Part I, §3.2.2

Met-Ocean Attribute: Compass point of Surface Wind Direction

Acronym: COMDIR

Code:

Attribute Type: E

Expected Input: ID Meaning

01 North (N)

02 North-North-East (NNE)

03 North-East (NE)

04 East-North-East (ENE)

05 East (E)

06 East-South-East (ESE)

07 South-East (SE)

08 South-South-East (SSE)

09 South (S)

10 South-South-West (SSW)

11 South-West (SW)

12 West-South-West (WSW)

13 West (W)

14 West-North-West (WNW)

15 North-West (NW)

16 North-North-West (NNW)

Definition: North 349-011 degrees (true north)

North-North-East 012-033 degrees (true north)

North-East 034-056 degrees (true north)

East-North-East 057-078 degrees (true north)

East 079-101 degrees (true north)

East-South-East 102-123 degrees (true north)

South-East 124-146 degrees (true north)

South-South-East 147-168 degrees (true north)

South 169191 degrees (true north)

South-South-West 192-213 degrees (true north)

South-West 214-236 degrees (true north)

West-South-West 237-258 degrees (true north)

West 259-281 degrees (true north)

ETMSS-III/Doc. 6.2(1), p. 54

West-North-West 282-303 degrees (true north)

North-West 304-326 degrees (true north)

327-348

North-North-West

References: WMO/TD-No. 577

WMO-No. 471, 2.2.3

Met-Ocean Attribute: Change in Surface Wind Direction

Acronym: CHAWDI

Code:

Attribute Type: E

Expected Input: 01: wind shift

02: veering wind03: backing wind

Definition: wind shift: Sudden change of wind direction. (WMO-No. 182,

W1160)

veering wind: Clockwise change of wind direction, in either

hemisphere. (WMO-No. 182, V0130)

backing wind: Counter-clockwise change of wind direction, in either

hemisphere. (WMO-No. 182, B0060)

References: WMO-No. 471, Annex 2.B, Multilingual List of Terms used in Weather and

Sea Bulletins

WMO-No. 558, Appendix I.2, Multilingual List of Terms used in Weather

and Sea Bulletins

WMO/TD-No. 850

Met-Ocean Attribute: Significant Wave Height

Acronym: SIWAHE

Code:

Attribute Type: F

Definition: The average height of the 1/3 highest waves. (WMO-No. 702, p.9)

Minimum Value: 0

Indication: Unit: metre (m)

Resolution: 1 m

Format: xx

Example: 3 for a significant wave height of 2.5 m to 3.4 m.

References: WMO-No. 471, 1.2.1.1

WMO-No. 558, Appendix I.4

Met-Ocean Attribute: Category of Significant Sea Wave Height

Acronym: CATSEH

Code:

Attribute Type: E

Expected Input: ID Meaning

01 Calm (glassy)02 Calm (rippled)03 Smooth (wavelets)

04 Slight
05 Moderate
06 Rough
07 Very rough
08 High
09 Very high
10 Phenomenal

Definition: The average height of the 1/3 highest sea waves. (according to WMO-No.

702, p.9)

Calm (glassy) 0 m

Calm (rippled) 0-0.1 m

Smooth (wavelets) 0.1-0.5 m

Slight 0.5-1.25 m

Moderate 1.25-2.5 m

Rough 2.5-4 m

Very rough 4-6 m

High 6-9 m

Very high 9-14m

Phenomenal over 14 m

References: WMO-No. 8, Part II, §4.2.12.5

Met-Ocean Attribute: Significant Swell Wave Height

Acronym: CATSWH

Code:

Attribute Type: E

Expected Input: ID Meaning

01 Low

02 Moderate03 Heavy

Definition: The average height of the 1/3 highest swell waves. (according to WMO-

No. 702, p.9)

Low 0-2 m

Moderate 2-4 m

Heavy over 4 m

References: WMO-No. 8, Part II, §4.2.12.5

Met-Ocean Attribute: Wave Length

Acronym: WAVLEN

Code:

Attribute Type: F

Definition: The horizontal distance, in metres, between two successive crests.

(WMO-No. 702, 1.2.1)

Minimum Value: 0

Indication: Unit: metre (m)

Resolution: 1 m

Format: xx

Example: 3 for a wave length of 2.5 m to 3.4 m.

References:

Met-Ocean Attribute: Significant Wave Period

Acronym: SIWAPE

Code:

Attribute Type: F

Definition: The average period of the 1/3 highest waves. (WMO-No. 702, p.9)

Minimum Value: 0

Indication: Unit: second (s)

Resolution: 1 s

Format: xx

Example: 3 for a significant wave period of 2.5 s to 3.4 s.

References: WMO-No. 471, 1.2.1.1

Met-Ocean Attribute: Significant Wave Direction

Acronym: SIWADI

Code:

Attribute Type: E

Expected Input: ID Meaning

01 North (N)

02 North-east (NE)

03 East (E)

04 South-east (SE)

05 South (S)

06 South-west (SW)

07 West (W)

08 North-west (NW)

Definition:

North 337-022 degrees (true north)

WMO/TD-No. 850, p.26

North-east 023-067 degrees (true north)

WMO/TD-No. 850, p.26

East 068-112 degrees (true north)

WMO/TD-No. 850, p.26

South-east 113-157 degrees (true north)

WMO/TD-No. 850, p.26

South 158-202 degrees (true north)

WMO/TD-No. 850, p.26

South-west 203-247 degrees (true north)

WMO/TD-No. 850, p.26

West 248-292 degrees (true north)

WMO/TD-No. 850, p.26

North-west 293-337 degrees (true north)

WMO/TD-No. 850, p.26

References: WMO-No. 471, 1.2.1.1

WMO-No. 558, Appendix I.4

WMO/TD-No. 850

Met-Ocean Attribute: Height of Storm Surge

Acronym: **HEISUR**

Code:

Attribute Type: F

Definition: ---

Minimum Value: 0

Indication: Unit: metre (m)

Resolution: 0.5 m

Format: xx.x

Example: 1.5 for a storm surge height of 1.25 m to 1.74 m.

References: WMO-No. 471, §2.3.2

WMO-No. 558, Part I, §3.2.2

Met-Ocean Attribute: Category of Tropical Cyclone

Acronym: CATCYC

Code:

Attribute Type: E

Expected Input: ID Meaning

01 Maximum winds 34-63 knots

02 Maximum winds of 64 knots or more

Definition: Specifies the intensity of the tropical cyclone.

References: WMO-No. 558, Appendix I.4, Symbols and Depictions Used on Radio-

facsimile Charts for Marine Purposes

Met-Ocean Attribute: Category of Surface Visibility

Acronym: CATVIS

Code:

Attribute Type: E

Expected Input: ID Meaning

01 Very poor (less than 0.5 nautical miles)

poor (0.5 to 2 nautical miles)
moderate (2 to 5 nautical miles)
good (greater than 5 nautical miles)

Definition: Very poor Less than 0.5 nautical miles

IHO/IMO/WMO S-53, 2009, 8.5.4

poor 0.5 to 2 nautical miles

IHO/IMO/WMO S-53, 2009, 8.5.4

moderate 2 to 5 nautical miles

IHO/IMO/WMO S-53, 2009, 8.5.4

Good Greater than 5 nautical miles

IHO/IMO/WMO S-53, 2009, 8.5.4

References: IHO/IMO/WMO S-53, 8.5.4.

Met-Ocean Attribute: Category of Significant Weather

Acronym: CATSWE

Code:

Attribute Type: L

Expected Input: ID Meaning

00 Area of heavy swell

11 Area of strong winds (6 and 7 Beaufort)

22 Area of medium cloud

Area of gales (8 Beaufort or more)
Area of continuous precipitation

77 Area of squally weather88 Area of heavy showers99 Area of thunderstorms

Definition: Area of heavy swell Area where the significant swell

wave height is above 4 m.

Area of strong winds (6 and 7

Beaufort)

Area of poor visibility Area where the visibility is less

than 2 nm

Area of gales (8 Beaufort or more)

Area of continuous precipitation

Area of squally weather Atmospheric phenomenon

characterized by an abrupt and large increase of wind speed with the duration of the order of minutes which diminishes rather suddenly. It is often accompanied by showers or thunderstorms.

Area of heavy showers Area of showers with a

precipitation rate of 10 mm/h or more. (WMO-No.8, Part 1,

Chapter 14)

Area of thunderstorms Sudden electrical discharges

manifested by a flash of light (lightning) and a sharp or rumbling sound (thunder). Thunderstorms are associated with convective clouds (Cumulonimbus) and are,

ETMSS-III/Doc. 6.2(1), p. 66

more often, accompanied by precipitation in the form of rainshowers or hail, or occasionally snow, snow pellets, or ice pellets. (WMO-No. 182, T0940)

References: WMO/TD-No. 850

WMO-No. 306, Code Table 4683

Met-Ocean Attribute: Category of Front

Acronym: CATFRO

Code:

Attribute Type: E

Expected Input: ID Meaning

cold front at the surface
warm front at the surface
occluded front at the surface

04 quasi-stationary front at the surface

05 convergence line

06 intertropical convergence zone

Definition: Cold front Any non-occluded front which

moves in such a way that cold air replaces relatively warmer air. (WMO-No. 182, C2210)

Warm front Any non-occluded front which

moves in such a way that warm air replaces cold air. (WMO-No. 182,

W0100)

Occluded front A composite of two fronts, formed

as a cold front overtakes a warm front or quasi-stationary front. (WMO-No. 182, O0070)

Quasi-stationary front A front which is stationary or

nearly so (conventionally, moving with a speed less than five knots).

(WMO-No. 182, S2760)

Convergence line Line along which the horizontal

convergence is a maximum. (WMO-No. 182, C3060)

Intertropical convergence zone Narrow zone where the trade

winds of the two hemispheres meet. (WMO-No. 182, I0800)

References: WMO-No. 558, Appendix I.4

Met-Ocean Attribute: Atmospheric Pressure Accuracy

Acronym: ATPACC

Code:

Attribute Type: F

Definition: Pressure (force per unit area) exerted by the atmosphere on any surface

by virtue of its weight; it is equivalent to the weight of a vertical column of air extending above a surface of unit area to the outer limit of the

atmosphere. (WMO-No. 182, A2930)

The extent to which the results of the readings of an instrument approach

the true value of the calculated or measured quantities, supposing all

possible corrections are applied. (WMO-No. 182, A0270)

Minimum Value: 0

Indication: Unit: hectopascal (hPa)

Resolution: 0.1 hPa

Format: x.x

Example: 0.2 for an atmospheric pressure accuracy of 0.2 hPa.

References:

Met-Ocean Attribute: Value of Atmospheric Pressure

Acronym: VALATP

Code:

Attribute Type: F

Definition: ---

Minimum Value: 0

Indication: Unit: hectopascal (hPa)

Resolution: 1 hPa

Format: xxxx

Example: 998 for an atmospheric pressure of 998 hPa.

References: WMO-No. 485, Appendix II-4

Met-Ocean Attribute: Value of Atmospheric Pressure Contour

Acronym: VALPCO

Code:

Attribute Type: F

Definition: ---

Minimum Value: 0

Indication: Unit: hectopascal (hPa)

Resolution: 1 hPa

Format: xxxx

Example: 998 for an atmospheric pressure of 998 hPa.

References: WMO-No. 485, Appendix II-4

Met-Ocean Attribute: Icing Intensity

Acronym: ICIINT

Code:

Attribute Type: E

Expected Input: ID Meaning

01 light

02 moderate03 severe04 very severe

Definition: Rate at which ice accretion occurs, expressed in units of depth per unit

time. (WMO-No. 182, I0220)

Light 1-3 cm/24 hr

Moderate 4-6 cm/24 hr

Severe 7-14 cm/24 hr

Very severe >14 cm/24 hr

References: WMO/TD-No. 850

Met-Ocean Attribute: Direction of Expected Movement

Acronym: **DIEXMO**

Code:

Attribute Type: E

Expected Input: ID Meaning

01 North (N)

02 North-east (NE)

03 East (E)

04 South-east (SE)

05 South (S)

06 South-west (SW)

07 West (W)

08 North-west (NW)

Definition: North 337-022 degrees (true north)

WMO/TD-No. 850, p.26

North-east 023-067 degrees (true north)

WMO/TD-No. 850, p.26

East 068-112 degrees (true north)

WMO/TD-No. 850, p.26

South-east 113-157 degrees (true north)

WMO/TD-No. 850, p.26

South 158-202 degrees (true north)

WMO/TD-No. 850, p.26

South-west 203-247 degrees (true north)

WMO/TD-No. 850, p.26

West 248-292 degrees (true north)

WMO/TD-No. 850, p.26

North-west 293-337 degrees (true north)

WMO/TD-No. 850, p.26

References: WMO-No. 558, Appendix I.4

Met-Ocean Attribute: Speed of Expected Movement

Acronym: SPEXMO

Code:

Attribute Type: F

Definition: ---

Minimum Value: 0

Indication: Unit: defined in the VUNITS attribute of the M_UNIT meta object class,

e.g. meter per second (m/s)

Resolution: 1 m/s or 1 knot

Format: xx

Example: 3 for a speed of 2.5 m/s to 3.4 m/s.

References:

Met-Ocean Attribute: Category of Expected Change in Intensity

Acronym: CATINT

Code:

Attribute Type: E

Expected Input: ID Meaning

00 Much weakening
01 Weakening
02 No change
03 Intensification
04 Strong intensification
05 Not observed previously

06 Undetermined

Definition: Specifies the expected change in intensity in the upcoming 24 hours.

References: WMO-No. 306, Code Table 0252

Met-Ocean Attribute: Direction of Surface Current

Acronym: DISUCU

Code:

Attribute Type: E

Expected Input: ID Meaning

01 North (N)

02 North-east (NE)

03 East (E)

04 South-east (SE)

05 South (S)

06 South-west (SW)

07 West (W)

08 North-west (NW)

Definition: Direction to which the surface current flows.

North 337-022 degrees (true north)

WMO/TD-No. 850, p.26

North-east 023-067 degrees (true north)

WMO/TD-No. 850, p.26

East 068-112 degrees (true north)

WMO/TD-No. 850, p.26

South-east 113-157 degrees (true north)

WMO/TD-No. 850, p.26

South 158-202 degrees (true north)

WMO/TD-No. 850, p.26

South-west 203-247 degrees (true north)

WMO/TD-No. 850, p.26

West 248-292 degrees (true north)

WMO/TD-No. 850, p.26

North-west 293-337 degrees (true north)

WMO/TD-No. 850, p.26

References: WMO-No. 471, §2.3.2

WMO-No. 558, Part I, §3.2.2

Met-Ocean Attribute: Speed of Surface Current

Acronym: SPSUCU

Code:

Attribute Type: F

Definition: ---

Minimum Value: 0

Indication: Unit: defined in the VUNITS attribute of the M_UNIT meta object class,

e.g. meter per second (m/s)

Resolution: 1 m/s or 1 knot

Format: xx

Example: 3 for a speed of 2.5 m/s to 3.4 m/s.

References: WMO-No. 471, §2.3.2

WMO-No. 558, Part I, §3.2.2

Met-Ocean Attribute:	Temperature Accuracy
----------------------	----------------------

Acronym: TMPACC

Code:

Attribute Type: F

Definition: A physical quantity characterizing the mean random motion of molecules

in a physical body. (WMO-No. 182, T0150)

The extent to which the results of the readings of an instrument approach the true value of the calculated or measured quantities, supposing all possible corrections are applied. (WMO-No. 182, A0270 → accuracy)

Minimum Value: 0

Indication: Unit: degrees Celsius (°C)

Resolution: 0.1 °C

Format: x.x

Example: 0.2 for a temperature accuracy of 0.2 °C.

References:

Met-Ocean Attribute: Value of Temperature

Acronym: VALTMP

Code:

Attribute Type: F

Definition: ---

Minimum Value: ---

Indication: Unit: degrees Celsius (°C)

Resolution: 0.1 °C

Format: sxx.x

s: sign, negative values only.

Example: 12.2 for a temperature of 12.2 °C.

References: WMO-No. 485, Appendix II-4

Met-Ocean Attribute: Value of Temperature Contour

Acronym: VALTCO

Code:

Attribute Type: F

Definition: ---

Minimum Value: ---

Indication: Unit: degrees Celsius (°C)

Resolution: 1 °C

Format: sxx.x

s: sign, negative values only.

Example: 12 for a temperature of 12 °C.

References:

Met-Ocean Attribute: Amount of Pressure Change

Acronym: AMPRCH

Code:

Attribute Type: F

Definition: ---

Minimum Value: 0

Indication: Unit: hectopascal (hPa)

Resolution: 0.1 hPa

Format: xx.x

Example: 1.7 for an atmospheric pressure of 1.7 hPa.

References: WMO-No. 485, Appendix II-4

Met-Ocean Attribute: Characteristic of Pressure Change

Acronym: **CHPRCH** Code: Attribute Type: F **Expected Input:** ID Meaning 00 Increasing, then decreasing; atmospheric the same as or higher than three hours ago 01 Increasing, then steady; or increasing, then increasing more slowly; atmospheric pressure now higher than three hours ago 02 Increasing (steadily or unsteadily); atmospheric pressure now higher than three hours ago 03 Decreasing or steady, then increasing; or increasing, then increasing more rapidly; atmospheric pressure now higher than three hours ago 04 Steady; atmospheric pressure the same as three hours ago Decreasing, then increasing; atmospheric pressure the same as 05 or lower than three hours ago 06 Decreasing, then steady; or decreasing, then decreasing more slowly; atmospheric pressure now lower than three hours ago 07 Decreasing (steadily or unsteadily); atmospheric pressure now lower than three hours ago

Definition: Characteristic of pressure tendency during the three hours preceding the

Steady or increasing, then decreasing; or decreasing, then decreasing more rapidly; atmospheric pressure now lower than

time of observation. (WMO-No. 485, App. II-4)

three hours ago

References: WMO-No. 485, Appendix II-4

80

Met-Ocean Attribute: Value of Isallobar

Acronym: VALISA

Code:

Attribute Type: F

Definition: ---

Minimum Value: 0

Indication: Unit: hectopascal (hPa)

Resolution: 1 hPa

Format: sxx

s: sign, negative values only

Example: 1 for an atmospheric pressure change of 1 hPa.

References: WMO-No. 485, Appendix II-4

Met-Ocean Attribute: Height of Cloud Base

Acronym: HCLOBA

Code:

Attribute Type: E

Expected Input: ID Meaning

00: 0 to 50 m 01: 50 to 100 m 02: 100 to 200 m 03: 200 to 300 m 04: 300 to 600 m 600 to 1000 m 05: 06: 1000 to 1500 m 07: 1500 to 2000 m 08: 2000 to 2500 m

09: 2500 m or more, or no clouds

99: Height of base of cloud not known or base of clouds at a level

lower and tops at a level higher than that of the station

Note: A height exactly equal to one of the values at the ends of the ranges shall be coded in the higher range, e.g. a height of 600 m shall be

reported by code figure 5.

Definition: Height above the Earth's surface of the base of the lower cloud layer

whose amount exceeds a specific value. (WMO-No. 182, C0280 (1))

References: WMO-No. 306, Code table 1600

Met-Ocean Attribute: Total Cloud Cover

Acronym: TCLOCO

Code:

Attribute Type: E

Expected Input: ID Meaning

00: 0

01: 1 okta ro 1/10 or less, but not zero

02: 2 oktas or 2/10-3/10 03: 3 oktas or 4/10 04: 4 oktas or 5/10 05: 5 oktas or 6/10 06: 6 oktas or 7/10-8/10

07: 7 oktas or 9/10 or more, but not 8 oktas or 10/10

08: 8 oktas or 10/10

09: 9 sky obscured, or cloud amount cannot be estimated

99: No measurements made

Definition: Fraction of the celestial dome hidden by all the visible clouds. (WMO-No.

182, T1110)

References: WMO-No. 485, Appendix II-4

WMO-No. 306, Code Table 2700

Met-Ocean Attribute: Velocity Units

Acronym: **VUNITS**

Code:

Attribute Type: Ε

Expected Input: ID Meaning

> Meter per second 01

02 Knot

Velocities are specified in meter per second (SI units of velocity). Definition: Meter per second

Velocities are specified in knot. Knot

References:

REFERENCES

- IEC, 2008, Maritime navigation and radiocommunication equipment and systems Electronic chart display and information system (ECDIS) Operational and performance requirements, methods of testing and required test results, IEC 61174
- IEC, 2008, Maritime navigation and radiocommunication equipment and systems Presentation of navigation-related information on shipborne navigational displays General requirements, methods of testing and required test results, IEC 62288
- IHO, 2000, IHO Transfer Standard for Digital Hydrographic Data, IHO S-57.
- IHO, 2007, Hydrographic Dictionary Appendix 1 Glossary of ECDIS Related Terms, IHO S-32.
- IHO, 2008, IHO Specifications for Chart Content and Display Aspects of ECDIS Appendix 2 Colour and Symbol Specifications for ECDIS, IHO S-52.
- IMO, 1995, Performance Standards for Electronic Chart Display and Information Systems (ECDIS), Resolution A.817(19)
- IMO, 1996, Adoption of New and Amended Performance Standards, Resolution MSC.64(67)
- IMO, 1998, Adoption of New and Amended Performance Standards for Navigational Equipment, Resolution MSC.86(70)
- IMO, 2004, Performance Standards for the Presentation of Navigation-related Information on Shipborne Navigational Displays, Resolution MSC.191(79)
- IMO, 2006, Adoption of the Revised Performance Standards for Electronic Chart Display and Information Systems (ECDIS), Resolution MSC.232(82)
- IMO, 2007, Draft Strategy for the Development and Implementation of E-navigation, NAV 54/25 Annex 12. (working document)
- IMO, 2009, Development of an E-navigation Strategy Implementation Plan Results of a Worldwide E-navigation User Needs Survey, NAV 55/INF.9 (working document)
- IMO, 2009, ITU Matters, Including Radiocommunication; ITU-R Study Group Matters World Radiocommunication Conference 2011 – Future Spectrum Requirement with Respect to Enavigation, NAV 55/8/2 (working document)
- IMO/IEC, 2002, Oceanographic Object Attribution Technical White Paper, HGMIO2/6e, Monaco (working document)
- IMO/IEC, 2002, Proposed Object Classes and Attributes for Weather, HGMIO2/10, Monaco (working document)
- IMO/IEC, 2007, Marine Information Objects (MIO), HGMIO4-4B, Durham, New Hampshire, USA (working document)
- IMO/IEC, 2007, General Content Specification for Marine Information Overlays (MIOs), HGMIO4-7B, Durham, New Hampshire, USA (working document)
- IMO/IEC, 2007, Relationship of Marine Information Overlays (MIOs) to Current/Future IHO Standards, Version 4, HGMIO (Lee Alexander, Michel Huet) (working document)
- IOC, 1975, Guide to Oceanographic and Marine Meteorological Instruments and Observing Practices, IOC Manuals and Guides No. 4.

- IOC, 1991, Tsunami Glossary, IOC Technical Series No. 37.
- WMO,1990, Manual on Marine Meteorological Services, WMO-No. 558.
- WMO, 1992, Manual on the Global Data-processing and Forecasting System, WMO-No. 485.
- WMO, 1992, International Meteorological Vocabulary, WMO-No. 182
- WMO, 1995, Manual on Codes Volume I.1 Part A Alphanumeric Codes, WMO-No. 306.
- WMO, 1998, Guide to Wave Analysis, WMO-No. 702.
- WMO, 1998, Handbook of Offshore Forecasting Services, WMO/TD-No. 850.
- WMO, 2001, Guide to Marine Meteorological Services, WMO-No. 471.
- WMO, 2002, Weather Information in Graphical Form for GMDSS Terms of Reference for the Rapporteur, ETMSS First Session, Lisbon, Portugal (working document)
- WMO, 2002, Weather Information in Graphical Form for GMDSS Report from the Services

 Programme Area Coordinator on Progress of Project with Inmarsat, ETMSS First Session,
 Lisbon, Portugal (working document)
- WMO, 2003, Manual on the Global Observing System Volume I Global Aspects, WMO-No. 544.
- WMO, 2006, Tropical Cyclone Operational Plan for the South-West Indian Ocean, WMO/TD-No. 577.
- WMO, 2007, Guide to the Global Observing System, WMO-No. 488.
- WMO, 2007, Technical Regulations Basis Documents No. 2 Meteorological Service for International Air Navigation, WMO-No. 49.
- WMO, 2007, Weather Information in Graphical Form for GMDSS, ETMSS Second Session, Angra dos Reis, Brazil (working document)
- WMO, 2007, Ice Objects Catalogue Version 4, ETSI Third Session, Geneva, Switzerland (working document)
- WMO, 2008, Guide to Meteorological Instruments and Methods of Observation Part II Observing System Chapter 4 Marine Observations, WMO-No. 8.
- WMO, 2008, Weather Reporting Volume D Information for Shipping, WMO-No. 9.
- WMO, 2009, Met-ocean Information in Graphical/Numerical Form and E-Navigation Charts, JCOMM/ETMSS TTMSI First Session, submitted by Dr Vasily Smolyanitsky, Geneva, Switzerland (working document)
- WMO, 2009, Met-ocean Information in Graphical/Numerical Form and E-Navigation Charts, JCOMM/ETMSS TTMSI First Session, submitted by IHB, Geneva, Switzerland (working document)
- WMO, 2009, Final Report, JCOMM Meeting Report No. 64, JCOMM/ETMSS TTMSI First Session, Geneva, Switzerland (working document)

Annex VI

ACRONYMS AND OTHER ABBREVIATIONS

AIS Automatic Identification System

EC Executive Council (WMO)
ENC Electronic Navigational Chart

ETMSS Expert Team on Maritime Safety Services (JCOMM)

ETSI Expert Team on Sea Ice (JCOMM)

GMDSS Global Maritime Distress and Safety System

HGMIO Harmonization Group on Marine Information Objects/Overlays (IHO/IEC)

IEC International Electrotechnical Commission

IHB International Hydrographic Bureau

IHO International Hydrographic Organization
IMO International Maritime Organization

IOC Intergovernmental Oceanographic Commission (of UNESCO)

JCOMM Joint WMO-IOC Technical Commission for Oceanography and Marine Meteorology

MIO Marine Information Overlays

MMMS Manual on Marine Meteorological Services

MSC Maritime Safety Committee (IMO)

MSI Maritime Safety Information

NAV Sub-committee on Safety of Navigation (IMO)

RCC Rescue Coordination Centre

SOLAS International Convention for the Safety of Life at Sea

TG-ENCIO Task Group on Electronic Navigational Chart Ice Objects (JCOMM/ETSI)

ToR Terms of Reference

TTMSI Task Team on Maritime Safety Information (JCOMM/ETMSS)
UNESCO United Nations Educational, Scientific and Cultural Organization

WMO World Meteorological Organization